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Abstract

/

This -repoort- introduces a new method for solving the problem of

optimally spacing points in a three-dimensional region so that their

distances from each other are as great as possible. One application of

the problem deals with colcr selection for aircraft displays where the

colors are plotted as points in a three-dimensional color space and the

distance between two points is directly related to the distinguishability

of the two colors. The method itself is a heuristic algorithm very

similar to one designed by Carter and Carter (2). The newer algorithm

apparently yields similar solutions with fewer runs, but because it is

more thorough, it is slower. The program was tested on problems as large

as 23 points whose feasible region had seven faces. The major dis-

advantage of this new method is that its solutions are not guaranteed to

be optimal. As a result, the user must perform several replications of

various randomly selected starting locations in order to increase the

chances of achieving an optimal solution.
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I. Introduction

For centuries, mathematicians have tried to solve tricky little

puzzles that perplex and confuse the human mind. Ruhick's Cube is a

popular recent example of this phenomenon. This thesis is another

example. Simply put, the problem addressed herein is to space points in

a three-dimensional region (like a box) so that they are as far apart

from each other as possible. On the face of it, the task seems rela-

tively easy, but nothing could be further from the truth. A simple

example would be to maximize the distance between just two points in a

cube. While the answer to that problem might be intuitively obvious

(place the points in opposite corners), add one more point and the solu-

tion is not so apparent and requires a great deal of mathematical rigor.

Faced with a problem like this in real life, most of us would be

content to settle on something that is less than optimal. Rut, to a

pilot who needs to distinguish between friendly and hostile forces on his

aircraft display, the importance of an optimal solution takes on a dif-

ferent meaning. That's why this project is so useful, and I sincerely

hope that it will help that pilot in even a small way.

One final thought before moving on. Although this is a Master's

thesis on what is potentially a very technical subject, it is my desire

to make the report understandable to even the most uninformed of laymen,

and perhaps even enjoyable at times. I do not believe that writings at

this level were meant to be boring and esoteric. So, if you cannot

understand it, then I have failed and I should be shot at dawn. Rut if

you don't try to understand it, then you're already wearing the blindfold

1

.i

- - - -- - - - - - - - - - - - -- '. -



-. . - -,. -' 1~~ -~ ~ - - . - . - I
A

and should be put in front of the firing squad instead. Load the rifle, I
cock the trigger, and turn the page to find out who's shooting who.
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II. Background

Why in the world would one want to space points in a three-

dimensional region, anyway? Well, there are many reasons. Say you

wanted to locate speakers for a quadraphonic stereo system in your living

room. You would want them as far apart from each other as possible

because you don't want the various sounds to become confounded. Or per-

haps you own a warehouse with a limited number of security cameras. You

would probably want the cameras optimally spaced so that no two were

filming the same areas of the warehouse. How would you go about solving

this problem mathematically? You could try to maximize the sum of the

distances between the objects, but that might result in a solution with

an unacceptably small distance. A more desirable solution would probably

result from maximizing the distance between the two closest objects.

This "maximin" formulation is accepted as the objective for the spacing

problem.

The spacib I problem is very similar to a problem known in the world

of operations research as the obnoxious facility location problem. An

example of an obnoxious facility would be a nuclear waste disposal site

which is most desirable when it is located far away from cities. Church

and GarfinKel (5) offer a solution to the obnoxious facility location

problem where the facilities can be placed in a discrete number of loca-

tions on a network, but the differences between that problem and the

spacing problem preclude successfully adapting Church and Garfinkel's

method to the spacing problem. First of all, the idea is to locate

obnoxious facilities as far away as possible from other fixed points,

3



whereas the spacing problem aims to locate the objects as far away from

each other as possible. Second, Church and Garfinkel's facilities can he

placed in only a finite number of locations on a network, while the

objects in the spacing problem can take on an infinite number of loca-

tions. Finally, the spacing problem's objective is to maximize the mini-

mum distance between points (maximin), as opposed to Church and

Garfinkel's objective of maximizing the median distance (maxian).

Another problem similar to the spacing problem is the location prob-

lem. It seeks to locate objects (like warehouses) as close to other

fixed facilities (such as retail stores) as possible. Once again, much

work has been done in the area by many people, most notably Charalambous

(1 and 3), Cooper (6), Juel (8 and 11), and Love (10, 11, and 12), but

any applicability to the spacing problem is negligible. As before, there

is the problem of locating facilities in relation to fixed objects

instead of each other. The location problem is also concerned with mini-

mizing the sum of the distances (minisum) or minimizing the maximum

distance (minimax), not with maximizing the minimum distance.

There are many practical applications of the spacing problem. In

addition to those mentioned before, the spacing problem could be applied

toward locating MX missile silos, spacing mines in a mine field, or per-

haps placing communications satellites in space for maximum coverage of

the earth. A particularly fascinating application of the spacing problem

is in the area of color spacing. One of the tasks of the Air Force Aero-

space Medical Research Laboratory (AFAMRL) has been to choose colors for

aircraft displays, air traffic control displays, aeronautical maps, etc.,

so that all the colors are as distinguishable from each other as pos-

sible. When one is dealing with a color Cathode-Ray Tube (CRT) display,

4



the CRT's red, green, and blue guns are used additively to produce vari-

ous colors. Therefore, any color can be uniquely defined by three param-

eters. They are the luminances (brightnesses) of the CRT's red, green,

and blue guns. So, each color produced by the CRT can be plotted as a

point in three dimensions where the axes represent those three values. A

depiction of the resulting color space is shown in Figure 1. The boun-

daries of the region correspond to the technological limits of the CRT.

For instance, in Figure 1, the maximum luminances are 50, 160, and

20 candellas per meter squarred for the red, green, and blue guns,

respectively, with zero being the minimum. In addition, there is a small

region near the origin that is not a feasible color choice for this

example because dark colors are not desired.

Ped

Yellow

Wit ?

H, ack I 60
,/_. - -- - - - - - - - - - - h ;reen~

/

Cyan

Figure 1. Example Feasible Region for the Color Problem
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Unfortunately, this red, green, blue color space is not "per-

ceptually uniform." That is to say that the perceived difference between

the red and the purple shown in Figure 1 is not the same as the differ-

ence between yellow and white even though their distances are the same.

The Commission Internationale de l'Esirage (CIE) recommends the CIE

L*u*v* system as a more perceptually uniform color space (13). The L*

axis is a function of the luminance of a color, while the u*v* plane

identifies the color's position in a transformation of the standard

u'v' CIE color diagram (see Figure 2). The distinguishability of two

400
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Figure 2. Color Chart for 1976 CIE-UCS Chromaticity Diagram
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colors in the CIE L*u*v* space is approximately proportional to the

Euclidean distance between their points. Euclidean distance is nothing

more than our common sense notion of distance whose formula is given by:

d(i,j) L- + (ut  .]2 + (v- v()

where

d(ij) the distance from point i to point j

mLl, ut, vt) = the coordinates of point i

Carter and Carter have developed a computer algorithm to solve the

4 color spacing problem and cite several military applications (2:2936).

They describe how the method could be used to choose colors for strategic

aircraft displays where the different colors correspond to friendly, hos-

tile, and neutral forces or various enemy target types. As another

example, an air traffic controller's display can show airplanes at dif-

ferent altitudes all represented by various colors. Some engineering

applications include showing "the distribution of some property

throughout a system, such as stress in a structure or percent of full

capacity in various parts of an electric power grid" (2:2936). As you

can see, there are many interesting applications of the color spacing

problem both in the military and in the private sector. AFAMRL, however,

has not been able to successfully implement Carter and Carter's program

because of various bugs and program deficiencies and has given only edu-

cated answers when decisions regarding color selection were required in

the past. Concerning the algorithm, Carter and Carter themselves believe

that "presumably a more efficient one could be devised by specialists in

7
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operations research" (2:2937). For those reasons, this effort was under-

taken. The general objectives herein are to provide AFAMRL with a

working program that produces good answers to the color spacing problem,

and is also an improvement over Carter and Carter's method.

4 8



III. Literature Review of Carter and Carter's Method

The only known solution to the color-spacing problem was introduced

by Carter and Carter in 1982 (2). It consists of first randomly placing

n points in the region (shown in Figure 1), then identifying the minimum

CIE L*u*v* distance between all n(n-1)/2 pairs of points in that

region. Let's call that value D. Once that distance has been identi-

fied, the two closest points (i.e., the endpoints associated with the

minimum distance) are investigated to see what effect is created by

moving each endpoint to its 26 adjacent locations. This step can con-

ceptually be thought of as "wiggling" the two closest points to see if

they can be moved farther apart. Figure 3 shows the various alternatives

for one endpoint. The alternatives fall on the boundaries of a cube

whose sides are twice the step-size in length and whose center (the 27th

point) is the endpoint itself. There are 52 different moves that can be

J

II

Figure 3. Alternative Locations for an Endpoint
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made (26 for each endpoint). If a move decreases the distance between

those two points or pushes one of them outside of the region, that

alternative is no longer considered. The remaining alternatives are then

ranked according to how much they increase the distance between the

endpoints.

If the highest ranking alternative causes an increase in D, that

move is made. Otherwise, the second highest ranking alternative is con-

sidered, and so on, until one of the alternatives causes an increase in

0. If none of the alternative moves increase n, then the step-size is

halved and the process is repeated; otherwise, the point is moved and the

process is repeated until an expanding move cannot be made, at which time

the step-size is halved.

This halving continues until the step-size is less than one lumi-

nance unit in the red, green, and blue color space. Once the step-size

is less than one unit, it is increased back to its original value and the

point-moving and step-size halving process is repeated, "to check that

the value of D arrived at is not merely a local optimum" (2:2938). If

the points remain in the same place throughout the repetition, then "the

... configuration of points is assumed to represent a global optimum

value of " (2:2938).

6In their results, the authors state that when the number of colors

(n) is three, the solution is identical for each random placement of

points, and that, in general, the number of identical solutions decreases
a

as n increases. They also give the results of example problems where 3,

4, 6, 10, and 25 colors were spaced.

Carter and Carter's method is a very good first attempt. Nonethe-

less, it h some problems as well. For instance, there is no supporting

10
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proof that the solutions are globally optimal, although Carter and Carter

assume that they are (2:2938). In the article, the authors summarize

results of their procedure where many replications are made for placement

of 3, 4, 6, 10 and 25 points. For the case of six points, 50 replica-

tions were made and the variance among the values of D arrived at was

62.45, where the maximum value of 0 for all replications was 14.08

(2:2938). This relatively high variance points to the fact that a wide

range of values for D can be expected for any one replication, and that

most replications are not close to even the maximum known value of D for

that problem, let alone the global optimum value which for color spacing

problems is largely still unknown. Whether or not the solutions repre-

sent even local optima is uncertain as well.

Another problem is that there is no validation of results. For

instance, Carter and Carter could have tested the algorithm on the simple

case of spacing eight points in a cube to see if the optimal solution (a

point in each corner) is obtained. There is not even a discussion as to

the physical desirability of the colors that were generated by the

algorithm.

Also, the computer code is poorly documented and difficult to under-

stand. Variables are not identified, variable names are often conflict-

ing and confusing, and statement labels are poorly numbered and sometimes

not found. As for the documentation, the number of internal comments is

insufficient to make the program easily understandable.

0 Carter and Carter's method has its good points as well. For

example, it is easy to understand. Rest of all, the technique apparently

yields solutions that are at least close to optimal, which is all they

really set out to do anyway. 9ut, they could possibly do better. For

11
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instance, the two closest points may be optimally spaced, but what about

the rest of them? Wouldn't it make sense to go through the algorithm

once, then maximize the second closest distance, the third closest, and

so on, until all the points are optimally spaced?

Also, Carter and Carter maneuver their points in one color space and

then transform them to another color system to calculate the distances.

I believe a more appropriate approach would be to do all the maneuvering

and calculations in the same coordinate system. This would not only

increase the efficiency of the program, it would increase its flexibility

as well. It would enable the algorithm to solve any type of spacing

problem, not just the color spacing problem. An algorithm like Carter

and Carter's, but with better validation and documentation, including the

concept of successively maximizing the minimum distance, second minimum

distance, third minimum, and so on, as well as continuous operation in

the same coordinate system, should make for an improved, more reliable,

more understandable, more efficient, and more flexible solution

technique.

12
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IV. Mathematical Development

If you're afraid of mathematics, like so many of us are, this sec-

tion might not appeal to you at first. But don't be frightened, because

the mathematics here are really nothing more than algebra, although the

terminology and notation might be somewhat difficult to keep track of.

The first part will show the mathematical formulation of the color-

spacing problem in general terms. Next, there will be an examination of

some of the solutions to simple spacing problems. The final section will

be devoted to discussing how the problem could be solved by nonlinear

programming.

Problem Formulation

For the spacing problem, we want to maximize the minimum distance

among n points in a convex polyhedron. It's a mouthful, isn't it? Let's

take it apart and define some terms. A polyhedron can be simply defined

as a region bounded by "many faces." A triangle is an example of a poly-

hedron that has three faces; a square has four faces. In three dimen-

sions, a cube and a box are each polyhedrons with six faces while a

pyramid has five. These are all convex regions as well, because there

are no "juts" sticking into the region. A star (for instance, one of

those on the U.S. flag) is not a convex region for that very reason.

More formally, a region is convex if every point in that region can be

connected to every other point in the region with a straight line that

II
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stays completely within the region. All it means is that no juts or

dents are allowed.

In two dimensions, the region bounded by a circle is convex, as is

that of a sphere in three dimensions, but neither one of them is a poly-

hedron because they have no faces. Mathematically speaking, a polyhedron

must have linear boundaries. That means that a polyhedron must be made

up of a series of straight lines (or planes if it's three-dimensional).

No curved boundaries are allowed. Since the color spacing problem is a

three-dimensional one, we will largely concern ourselves with three

dimensions from now on.

The boundaries are known in the trade as constraints. A linear con-

4 straint is of the form:

ax + by + cz = k (2)

where

(x,y,z) : the coordinates of a point

k = a constant known as the right hand side value

a, b, and c = any real numbers

The above equation describes a plane. Changing the equation to ax +

by + cz < k , we have the points on a plane in addition to those on one

side of it. But our region has many faces to it, so that there are

actually many constraints of the form:

alx + bly + c1z_< k1

14
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a2x + b2y + c2z< k2

a3x + b3y + c3z < k3

afx + bfy + cfz < kf

where

f = the number of faces which bound the region

Together, these constraints form a region within which all of our points

must stay. If a point is outside of the region, then at least one of

these constraints will be violated.

Let's turn our attention again to the objective. We want to maxi-

mize the minimum distance among n points. The distance from one point to

another in the region can be measured by the Euclidean distance formula:

d(i,j) =(x i - xj)I + (Yi _ yj)2 + (zi _ zj)
2  (3)

where

d(i,j) = the Euclidean distance from point i to point j

* (xi, yi, zi) = the coordinates of point i

In order to solve the problem, we need to find the minimum distance

between all pairs of points. If there are only three points, it's easy;

15
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there are only three pairs of points and we want the min {d(1,2),

d(1,3), d(2,3)} where min { denotes the smallest value of all the

numbers in the set in brackets. But for n points, that set may be quite

large. The minimum distance for n points would be:

min Id(1,2), d(1,3), d(1,4), ... , d(l,n), d(2,3), d(2,4),

d(2,n), d(3,4), ..., d(3,n), ..., d(n-2,n-1), d(n-2,n), d(n-l,n)

As a matter of fact, there are n(n-l)/2 values in the set. Letting

D = min {d(i,j)}, the objective then is to:

maximize D = maximize min {d(i,j)} (4)

subject to

.(xl " x2)
2 + (yl Y2 ) 2 + (zl " z2 )

2 = d(1,2)

S(xl" x3 )
2 + (Yl Y3 )2 + (zl " z3 )2 : d(1,3)

S(xn-I" Xn) 2 + Y - n 2 + (zn-Z- Zn) 2 : d(n-1, n)

alx I + bly I + clIz < kI

alx 2 + blY 2 + c1z2 < k

16
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afxl + bfy, + cfzl < k

af2  + bf2  + cf2  < k

afx 2 +Ony + cfz 2  k2
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n : the number of points

f = the number of faces

the first set of constraints the distance equations

the second set of constraints the boundary constraints for

all n points

We can eliminate the square root signs in the distance constraints

and it will not affect the formulation, so let's do that just to uncom-

plicate the equations. Also, we can subtract D from all the distance

constraints to create equations of the form:

(x - x Y - y j )2  + (zi  _ zj) 2  - D = d(i,j) - D (5)

But we know that d(ij) - D is going to be a number greater than or

equal to zero because D represents the smallest possible value of any

d(i,j). Therefore, we can change the equation above to:

- (xi - xj)2 + zi _zj)2 D D> 0 (6)

The problem now becomes:

maximize D (7)

4 subject to

(xi - xj) 2+ (Yi Yj)2 + (zi . zj) 2  n > 0

I

alxg + blYg + clZg < k1

18
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a2Xg + b2Yg + C2Zg < k

afxg + bfyg + CfZg < kf

where

i = 1 to n -1

j :i + I to n

g = a subscript for the I through n points that must stay within

each boundary constraint

n = the number of points

f = the number of faces

At this point you might think we're done, but there are a few more

simplifications to go. For practically all commercial methods of con-

strained optimization, the constraints are required to have equal signs

instead of inequalities. We accomplish this by using variables that are

commonly referred to as surplus and slack variables. For example, we

know from before that the value of d(ij) - D is non-negative, but we

don't know how large it is. If we call this value sij and subtract it

from the distance constraint, we have:

(xi - x) 2 + ( - yj)2 + (zi. zj 2. D - sij : 0 (8)

19
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The constraint is now an equality constraint as required, and sij is

called the surplus variable because it represents how much greater than

zero equation (6) is.

Similarly, we can add what is called a positive slack variable to

the boundary constraints to make equations of the form:

ahXg + bhyg + chzg + Shg = kh (9)

where

Shg = the slack variable

The problem can then be formulated as:

maximize D (10)

subject to

(xi - x j 2 + (Yi "yj) 2 + z i  z D s ij 0

ahxg + bhYg + chzg + Shg = kh

Xg, Yg9 Zg. 0, sij , Shg , kh > 0

where

i =1to n-1

=i + 1 to n

g = a subscript for the 1 through n points

h = a subscript for the I through f boundary constraints

20
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n the number of points

f the number of faces

sij = surplus variables for the distance constraints

Shg = slack variables for the boundary constraints

The third set of constraints states that x, y, z, D, s, S, and k

must all be greater than or equal to zero, commonly referred to in the

business as the non-negativity constraints. This is another requirement

of the commercial optimization techniques. Let's talk about the non-

negativity constraints. We already know that D is positive (you can't

have a negative distance), and sij and Shg are also positive as we

discussed before. If the x's, y's, and z's could possibly come out nega-

tive, we could make transformations of the form xf = xi - t where t is

the minimum possible value of x, to ensure that x: is positive. If k

is negative, then you can multiply both sides of the equation by -1 to

alleviate the problem, but the sign changes from less than to greater

than, and Shg becomes a surplus variable instead of a slack variable.

These steps ensure that S would always be positive as well as k, and the

non-negativity constraints are now completely satisfied.

Notice that we now have n(n-l)/2 distance constraints that are

nonlinear, and n • f linear boundary constraints. The next step is to

incorporate the nonlinear constraints into the objective function with

what is called a Lagrangian function. If we call the left side of the

first distance constraint Q1 2 , the second Q1 3 , and so on, the Lagrangian

would look like this:

L = D 112 13013  . + inQln + . + n-lnQnln (I)
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or similarly:

n-i n 2 2 2
L D+Xij [(xi -j ). + (Yiy. j + (zi ziJ - 0-

(12)

where

L the Lagrangian function

Xj= the Lagrangian variables

So, the formulation of the problem now looks like this:

maximize

n -i n 2 + ( i j 2 + z i j 2 r iL. [Di- + E>' L Xj ii[(i

(13)

subject to

a h xg + b hyg + C h Zg + S hg kh

x, y, z, D, s, S, k > 0

where

g =a subscript for the I through n points

6 h =a subscript for the 1 through f boundary constraints

i =1 to n - 1

i = i + 1 to n

S n = the number of points
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f = the number of faces

sij = surplus variables for the distance constraints

Shg = slack variables for the boundary constraints

(Xg, yg, Zg) coordinates of point g

ij = Lagrangian variables

And that's it. We now have a nonlinear objective function and n • f

linear constraints. Additionally, the objective function is mathemati-

cally classified as convex because it is the summation of many convex

functions. This is somewhat unfortunate because if it were concave, the

problem would fall under a category of problems which could be solved

using convex programming; a solution technique which is widely used in

operations research. Before we leave this section, I would like to

mention one more thing. Originally, it was thought that the color spac-

ing problem had completely linear boundary constraints (i.e., that the

region was a polyhedron). It turns out that this is not the case. It is

indeed a convex polyhedron in the red, green, blue coordinate system, but

in the one that counts, the CIE L*u*v* system where distances are com-

puted, it is not. However, it is still convex and the general formula-

tion above still holds. Those constraints that are nonlinear can be

moved into the Lagrangian function in much the same manner as the dis-

tance constraints were, while the linear boundary constraints can stay

put. That concludes the problem formulation, and we are now ready to

look at the solutions to some easy spacing problems.
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Solutions to Simple Problems

This is the section where the puzzle is solved. Although the

solutions here are for very simple problems and many of them can he

recognized intuitively without any trouble, some of them are not so

apparent. What I'm going to show you here are the solutions for spacing

2, 3, 4, 5, and 6 points in a square to get a feeling for the types of

solutions that can be expected from the spacing problem. Included is a

discussion of the mathematical aspects of some of the solutions and some

conclusions based on what we've seen.

Taking a look first at the solution for two points (shown in

Figure 4), we can see that it is exactly what one would expect. The

points are in opposite corners. Realize also that there are actually two

possible optimal solutions that will yield the same value for 0. fne is

pictured here and the other would, of course, have the points in the

other two corners.

The solution for spacing three points is somewhat less obvious (see

Figure 5). It turns out that the points form an equilateral triangle

/ !
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*Figure 4. Solution for Spacing Figure 5. Solution for Spacing

Two Points in a Square Three Points in a Square
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(i.e., a triangle whose sides are of equal length) with one point in a

corner and the other two points on opposite faces at angles of 15 degrees

from the corner point. And, not coincidentally, their coordinates are

(0,0), (1, tan 15 degrees) and (tan 15 degrees, 1), respectively, for a

square whose sides are one unit long. In addition, one can easily tell

that this problem actually has four solutions that are multiple optimal;

each one corresponding to a different corner point.

Spacing four and five points in a square is trivial. For four, the

points belong in the corners. The five-point solution is identical to

the four-point solution with the additional point going in the center of

the region (see Figures 6 and 7). Incidentally, both of these problems

only have the one optimal solution.
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\ / /
//

/ /

/ N /

/ / \

/ /

//

/ / / N

Figure 6. Solution for Spacing Figure 7. Solution for Spacing

Four Points in a Square Five Points in a Square
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Now we get to the really exotic one. The optimal solution for

spacing six points in a square is shown in Figure 8. Is that what you

would have expected the solution to look like? If you're like most

people, probably not. I would have guessed that all four corner points

would be filled and that the two other points would be somewhere in the

interior. Instead, there are two corner points, one interior point, and

three points on the faces. The presence of a counterintuitive solution

like this one indicates that accepting human judgment for good solutions

may be risky. It further emphasizes the need for a computer generated

solution technique like the one introduced here. Notice that the left

two-thirds of the region is identical to a skinny five-point solution,

and that the points in the right two-thirds form a diamond where all the

sides are of equal length. In all, there are six distances that are

identical--the four of the diamond and the two connecting the interior

point to the corner points--and they all correspond to the minimum

distance. Notice also that there are four multiple optimal solutions for

this proDlem.
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Figure 8. Solution for Spacing Six Points in a Square
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That brings us to the conclusions that can be drawn from these

simple examples. First, it appears that the points generally tend to

fall in the corners and the faces before they go to the interior of the

region. Second, the solutions are not always what one would expect. The

six-point problem yields a good example of that phenomenon. Third, most

of the problems have multiple optimal solutions, so that the decision

maker can often choose between several alternatives. Finally, it appears

that the optimal solutions all have a high percentage of their distances

identical, and equal to the maximized minimum distance. For instance,

the three-point solution has 3 out of the 3 equal to 0, the four-point

solution has 4 out of 6, the five-point has 4 out of 10, and the six-

point has 6 out of 15. This means that one might be able to tell how

good his or her solution is not only by the value of 0, but also by the

number of distances that are equal to that value.

Solution by Nonlinear Programming

Up to now, you may have been thinking that the problem looks inter-

esting, but the mathematical formulation appears pretty complex. How

does one actually solve it? Well, there are several ways. You can write

a heuristic algorithm like Carter and Carter did, and like I did. Or you

can solve it intuitively if it's simple enough. Or you might be able to

use a computerized nonlinear optimization technique. This section will

discuss one such nonlinear programming method.

It was originally called the Method of Approximation Programming

(MAP) when it was first introduced back in the late 1950s by Griffith and

Stewart (7), hut now it is perhaps better known as successive linear pro-

gramming (SLP). It works like this: Each nonlinear constraint is
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linearized using a first-order Taylor's series expansion. For those of

you who don't know, the Taylor's series expansion of an equation is just

a mathematical series of summed terms which approximates the original

equation and converges to the original with enough terms in the series.

Once the nonlinear constraints are linearized, the user selects a

starting set of values and solves the now completely linear problem using

linear programming (LP). The solution to that linear programming problem

is then used as the new starting set, and another LP solution is

generated. This goes on until the LP solutions become identical, at

which time the LP solution is also the solution to the nonlinear problem.

There are certain restrictions on the type of problem for which this

technique will guarantee an optimal solution, yet Griffith and Stewart

state that "problems have been solved with MAP which do not fully satisfy

all of these requirements" (7:379). The reason this technique was not

chosen to solve the color spacing problem is because of the size of the

problem. For example, in order to solve Carter and Carter's problem for

25 points, there would be 175 boundary constraints (some linear, some

nonlinear), 300 nonlinear distance constraints, and 76 decision vari-

ables. It is uncertain whether an LP program could solve that problem in

a reasonable amount of time, let alone solve it again for the second

closest distance, the third closest, and so on, as the heuristic algo-

rithm introduced in this thesis is able to do. Although this problem may

not seem like an impossible task for some commercial LPs, the primary

ohjective of this effort is to provide AFAMRL with a technique that

works. For that reason, I chose to solve the problem with a heuristic

algorithm instead of SLP.
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V. Description of Heuristic

If you're reading through this section and it looks vaguely familiar

to you, it's not a case of precognition on your part, so don't call the

psychiatrist. It's because the heuristic described here is largely pat-

terned after that of Carter and Carter which was described in Sec-

tion 11I. However, there are some major and very important differences,

so don't think that you can skip to the next section because you already

know all about it. On the contrary, you should read through this entire

section if for no other reason than to please me. I will be extremely

pleased if you read the first portion which basically describes how the

algorithm works and some of the logic behind it. And, I will be ecstatic

if you read the second portion which identifies the differences between

this algorithm and Carter and Carter's.

The Algorithm

Recall that the purpose of this thesis is to maximize the minimum

distance among n points in a convex region, and then as a kicker to suc-

cessively maximize the second minimum distance, the third minimum, and so

on, until all points are optimally spaced. The first step in achieving

this objective is to randomly place the points uniformly throughout the

region. For the color spacing problem, it would look like the one shown

in Figure 9. Recall from before that this region is not a polyhedron,

although Figure 9 depicts it as one. The actual color spacing region

would have many of its boundaries bowed out slightly. Because they are
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Figure 9. Approximate Feasible Region for the Color Spacing
Problem in the CIE L*u*v* Color System

bowed out and not in, the region is still convex, so the solution

technique described here still applies.

In step 2, the program finds the minimum distance among all n(n-l)/2

pairs of points, and the endpoints that correspond to that distance. The

third step is to define the 27 alternative locations for each of the two

endpoints found in step 2. These alternatives lie on a unit cube around

the endpoint whose sides are twice the step-size in length. Figure 3 on

page 9 depicts these alternative endpoint locations.

In the fourth step, the alternatives are checked to see if an

improvement can be made by moving the endpoints. The program does this

3
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by first checking the alternatives to see if they are in the region.

Then, taking one legal alternative at a time, it checks the discance

between endpoints to see if that value is greater than before. Next, it

checks the new overall minimum distance to see if that is greater. If

all of those conditions are successfully met, then the endpoints are

moved and the routine checks the next alternative for an even greater

possible improvement. It does this for every possible combination of

alternative endpoint locations; a total of 729 combinations. If several

alternatives have the same overall minimum distance, which is likely, the

tie goes to the alternative producing the greatest distance between

endpoints.

The program then returns to step 2 and finds the new overall minimum

distance and the endpoints that correspond to that distance. This loop

continues until no improvement can be made with the given step-size. At

that time, the step-size is halved and the program begins looping again

starting at step 2. This halving process continues until the step-size

reaches some minimum value chosen by the user and we enter step 5.

The fifth step controls the fixing of points already maximized and

the status of the program. When the step-size reaches its minimum toler-

ance, one of the endpoints is fixed in its position, the step-size is

returned to its original value, and the program returns to step 2. The

only difference in the logic now (other than a point being fixed) is that

the minimum distance calculated in step 2 can't have two fixed points as

its endpoints. This enables the program to concentrate on the second

shortest distance. The fixing of points continues until all the points

become fixed, at which time they are all unfixed and the routine starts

all over again at step 2 as if the current location scheme were the
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starting positions. If the program runs all the way through again and

the points haven't moved, then the program is done. Otherwise, the pro-

grain keeps going until there is no change in location for one complete

iteration. Figure 10 contains a flowchart of the program's logic, while

Appendix C contains an example of how the program optimally spaced four

points in a square.

Differences with Carter and Carter's Method

As I said at the top of this section, there is a striking resem-

blance between Carter and Carter's method and the one described here.

However, there are four major differences which I would like to discuss

at this time.

The first of these differences lies in the checking of alternatives

to see what expanding move should be made. Carter and Carter move only

one endpoint at a time and, therefore, choose between only 52 possible

endpoint location schemes (26 for each endpoint). On the other hand, the

Roley algorithm moves both endpoints at once and, as a result, has a

total of 729 possible endpoint location schemes. It's just a more

exhaustive search for the best possible move, that's all.

Along the same lines, Carter and Carter's method ranks the alterna-

tives as to how much they increase the distance between endpoints and

then chooses the highest ranking alternative that also increases the

overall minimum distance. On the other hand, my program chooses the

alternative that most increases the overall minimum distance with ties

going to the alternative which causes the greatest increase in the end-

point distance. The difference is that Carter and Carter's algorithm may
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not choose the best alternative for increasing the overall minimum dis-

tance, whereas mine does.

Another difference has to do with the thoroughness of the spacing

method. Carter and Carter maximize the minimum distance hut leave the

second minimum, third minimum, and all the others where they are. My

algorithm not only maximizes the minimum distance, it successively maxi-

mizes the second minimum distance, the third minimum, and so on until all

points are optimally spaced. The result is a complete optimization of

all distances, not just the minimum distance. The price is a more com-

plex and slower computer algorithm.

The fourth and final difference has to do with the respective coor-

dinate systems that are used as the primary operating spaces. Carter and

Carter's technique spaces points in the red, green, and blue color sys-

tem, and converts the colors to CIE L*u*v* color coordinates in order to

calculate spatial distances. My program acts in a reverse manner. It

maneuvers points and calculates distances in the CIE L*u*v* system, but

checks color locations in the red, green, and blue system to make sure

thay are within the houndaries of the region. It was originally hoped

that all operations and calculations could be done in the CIE L*u*v*

system for increased efficiency, but the equations for the boundary con-

straints could not be derived in the L*u*v* system, preventing its use as

a location checking coordinate system.
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VI. Results

Now that you know how the thing works, let's find out how well it

works. There are several questions that need to be answered in this

section. Does the algorithm guarantee an optimal solution? Does it work

for very large problems? How well does it perform in comparison to

Carter and Carter's method? What are some of the factors to which the

program is sensitive? What are its biggest advantages? What are its

biggest disadvantages? These are the questions that will indeed be

answered in this section.

T

Optimality

The algorithm does not guarantee an optimal solution. However, it

was tested on a number of problems whose solutions are known and the

results are encouraging. These problems include spacing three, four,

five, and six points in a square and spacing eight points in a cube.

Each problem was tested with three different sets of randomly placed

points and the algorithm produced the optimal solution in 14 of the 15

problems. That's a success rate of 93 percent. The only unsuccessful

attempt involved one of the tries at spacing five points in a square. In

that instance, the minimum distance arrived at was .638 units compared

with the optimal solution of .707, so that it was within 90 percent of

optimal. In general, the more replications that are performed, the

better chance of success.
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Size Limitations

This may be the largest downfall of my program. I had originally

intended for it to accommodate up to 50 points and 10 faces. However,

the largest problem it has been able to successfully solve was the color

spacing problem with 23 colors and 7 faces. Larger problems exceeded the

- time limit of 1000 CPU seconds on the CDC 845 (Cyber) computer. The

reason for this size deficiency boils down to the thoroughness of the

program. Each iteration checks n(n-1)/2 distances for up to 729 alterna-

tives. It takes 21 iterations for the step-size to reach its minimum

value. The program must perform those 21 iterations for each of the n

points that are fixed in succession. It then goes through the whole pro-

cess at least one more time or until the point locations do not change.

Experience has shown that it usually goes through twice. With an

increase in n, the number of computations (and thus the CPU time

required) goes up exponentially, so one can easily tell that size is a

serious factor. Presumably, reducing the number of alternatives,

increasing the minimum step-size, or reducing the amount of point fixing

would incre3se the ability of the program to handle larger problems.

Performance in Comparison to Carter and Carter's Method

*The comparison of my program with Carter and Carter's was done with

identical color parameters of Y0 9 U6, V6 , and the chromaticity coor-

dinates of the guns. Table I contains comparative results for spacing 3,

4, 6, 1.0, and 25 colors.
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TABLE I.

COMPARISON OF MINIMUM DISTANCES

Average Computer
Time Per Replication

Number Number
of Best Answer of Repli- CDC 845 UNIVAC 1182
Colors Method (CIE L*u*v*) Variance cations (sec) (sec)

3 Roley 229.26 1.17 5 23.50
Carter 239.33 .11 49 1.31

4 Roley 156.28 136.62 5 42.95
Carter 155.87 37.14 50 1.76

6 Roley 124.85 79.61 5 100.49
Carter 124.08 62.45 50 2.48

10 Roley 71.07 48.61 20 178.90
Carter 89.43 27.73 50 4.22

25 Roley 0.00 0.00 5 >1000.00
Carter 51.60 7.34 46 12.39

As an explanation, I originally intended to perform only five

replications for each problem because time considerations prevented me

from performing 50 runs as Carter and Carter did. However, I ended up

doing 20 runs of the ten color problem to try to decrease the great

disparity of results. Also, I was unable to successfully execute the 25

color problem because the CPU limit of 1000 seconds was exceeded for each

attempt.

It is difficult to compare this algorithm with Carter and Carter's

because there are so many factors that can be used as a measure of effec-

tiveness. Most people, however, would consider the minimum distances

produced by each method as their primary concern. Notice in Tablq I that
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the minimum distances are very similar for spacing 3, 4, and 6 colors

although Carter and Carter's results are based on approximately 10 times

more runs. The case of spacing 10 colors is perplexing. One would

assume that the results would again be equivalent because the techniques

are so similar. Apparently, that is not true. My heart tells me that

something is wrong, but it is difficult to confirm Carter and Carter's

results because those actual color locations were not published and are

not available at this time. Perhaps an even greater number of replica-

tions would yield a better solution. In the meantime, I can only admit

that my algorithm is deficient for spacing larger numbers of colors.

Another criteria one might use to judge the two methods would be to

compare the distances between the second closest points, third closest,

and so on. This would indeed be an appropriate measure because the fun-

damental conceptual difference between the two methods is that mine

concentrates on successively maximizing all distances, whereas Carter and

Carter's maximizes only the minimum distance. Presumably, these efforts

should have paid off, but it is difficult to judge because of a limited

sample size. Table II presents a comparison of distances for the six-

color spacing problem. I would have liked to compare other problems in

addition to the six-color one but it was the only one that was published

and available, so the sample size isn't quite what one would need to make

a definitive judgment. Notice, however, that the first three distances

are slightly better for my algorithm, the next six are fairly even, while

0 the last six are clearly in Career's favor. This could indicate that,

while maximizing the second and third minimum distances produces better

results for those values, it may cost in the long run in the form of

smaller values for the greater distances. Notice also that the first
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TARLE I.

COMPARISON OF ALL DISTANCES FOR THE SIX-COLOR PROBLEM

ith ith ith
Minimum Minimum Minimum
Distance Roley Carter Distance Roley Carter Distance Roley Carter

1st 125* 124 6th 129 130* 11th 182 218*

2nd 125* 124 7th 136* 133 12th 201 237*

3rd 125* 124 8th 138 140* 13th 220 239*

4th 125 125 9th 149* 147 14th 239 249*

5th 125 125 10th 171 210* 15th 241 263*

*Denotes the superior value.

through sixth distances are basically the same regardless of whether or

not they are maximized. They seem to have been automatically maximized

by maximizing the minimum distance. That indicates that successively

maximizing higher distances may not be worth the extra computer time

required. These results also support the observation that was made in

Section IV that optimal solutions will generally have several distances

equal to the minimum distance. It is a characteristic that could be

extremely useful in determining whether or not a particular solution is

close to optimal.

One might also be impressed with my method if it could take Carter

and Carter's best solution for a particular problem, use it as a starting

location scheme, and improve upon it. Using Carter and Carter's six-

color solution (because it was the only one available) as an initial set
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of colors resulted in a mild improvement of the minimum distance from

124.026 CIE L*u*v* units to 124.145 units. Research by Carter and Carter

has shown that distinguishability between colors "deteriorates rapidly

when the distance between colors is about 40 CIE L*u*v* units," (2:2937)

so this slight improvement of .12 unit is inconsequential. Perhaps more

importantly, my algorithm improved on 11 out of the 14 ,ther distances

with one unchanged and two decreasing slightly. You may have noticed

that the original distance of 124.026 does not correspond to Carter and

Carter's calculated value of 124.08 as shown in Table 1. Taking their

same set of color locations in red, green, and blue coordinates, I cal-

culated a minimum distance of 124.026 in L*u*v* coordinates instead of

124.08 (the exact L*u*v* coordinates were not published). The difference

is probably due to roundoff error. But, how does one explain how I could

improve on their optimal solution with basically the same technique?

Accuracy. Because Carter and Carter's minimum step-size is one unit,

they are not able to attain the same level of accuracy as my heuristic

does with a minimum step-size of .0001 units. Consequently, the Carters

are not able to "snuggle" their points into the best locations. All this

indicates is that the minimum step-size is a control over the level of

accuracy one wishes to achieve.

As was briefly discussed before, the question of computer time may

also be an important performance characteristic by which to judge the two

methods. Theoretically, Carter and Carter's method should be consider-

ably faster because it maximizes only the minimum distance and isn't

concerned with the second minimum distance, third minimum, and so on.

Looking again at Table I, we can see that this is, in fact, the case. It

should be remembered, however, that comparing run times on two different
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computers is somewhat like comparing apples and oranges and should be

taken with a grain of salt.

As far as those at AFAMRL and I are concerned, the chief criterion

for comparison is which program works. I personally know of no place

where Carter and Carter's algorithm is currently running and several

places where people have tried to implement it and have not been able to,

AFAMRL included. On the other hand, my program is one for one so far so

it must be given the edge. Interested parties will he delighted to find

out that my program is heavily documented internally, easy to understand,

utilizing classic structured programming concepts and written in

FORTRAN 77. These characteristics give my program the added advantage of

being easier to modify and/or upgrade by others who may be so inclined.

A listing of the code is contained in Appendix B for all to judge for

themselves.

Briefly summarizing this section, we found that Carter and Carter's

method works equally as well for finding the maximum minimum distance,

but requires more runs. For the six-color spacing problem, theirs

yielded slightly worse values for the second and third minimums, and much

better results for the greater distances. Carter and Carter's program

takes less time, but has a slightly lower degree of accuracy. Unlike

Carter and Carter's, my program works, is well documented, and easy to

understand.

Sensitivity to Parameters

The program introduced in this report is highly sensitive to four

parameters. They are the maximum step-size, the step-size reducing

scheme, the minimum step-size, and the initial random positioning. The
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maximum step-size is important because some solutions are not obtainable

for certain step-sizes and point locations. Take, for instance, the case

of spacing eight points in a cube whose sides are one unit long. Suppose

seven of the points are in the corners and the eighth is in the very

middle of the cube. The eighth point should migrate to the empty corner,

but unless the step size is greater than one-third of a unit, the minimum

distance will decrease if it tries to move in any direction. Essen-

tially, the point is "locked in" to its location. To avoid this problem,

I recommend using a maximum step-size equal to approximately half the

distance between the two farthest points in the region. This way, a

point located in the middle can move to any other spot in the region.

Granted, a point doesn't necessarily have to be in the middle to be

locked in. Let's say the eighth point in our example above is not

located in the exact middle. Let's say instead that it is located

towards the empty corner but less than one-third of a unit from the

middle. A step-size of .5 now puts the point out of the region, so it

still can't move closer to where it's supposed to be. If the step-size

is halved, the point still may not be able to go towards the corner.

But, some other step-size reduction scheme like reducing it by four-

fifths might send the point to the optimal solution. In that sense, the

reduction scheme is another factor which could affect the solution. The

problem with that alternative is that it takes quite a few more itera-

tions. For instance, to go from .5 to .0001 by halves, it takes 13

iterations. To go from .5 to .0001 by four-fifths takes 39 iterations.

More iterations means more computation time and, thus, a less desirable

program. The Carters and I both used a halving scheme, but I would
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recommend that any user experiment with this parameter to find out what

is best for his or her application.

The minimum step-size, although a factor to the solution, is not as

important as the two parameters discussed above. The minimum step-size

controls the accuracy of the solution. For three decimal places of

accuracy, .0001 should be the minimum step-size. For two places, use

.001, and so on. Increasing the minimum step-size can cause a surprising

decrease in the number of iterations required. For instance, it takes

only six iterations to go from .5 to .01 by halves as opposed to 13 iter-

ations to go to .0001.

The final parameter that significantly affects the solution is the

seed. This is the starting value that is used in the random number

generating sequence which calculates the starting locations for the

points. One can intuitively realize the importance of the seed by under-

standing that some initial location sets are better than others. A bad

location set is shown in Figure 11. None of the points in that example
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Figure 11. Example of Locally Optimal Solution
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can move anywhere without getting closer to another point, and yet the

solution is not optimal. It is called a "locally" optimal solution as

opposed to the "globally" optimal solution which has a point in each cor-

ner. Spacing problems apparently tend to have many local optima. Chang-

ing the seed and doing numerous replications will increase the chances of

finding a global optimum.

Advantages

The heuristic algorithm described here has numerous advantages.

Here is a list of some of them:

1. Flexibility. The program works for any spacing problem

including the color spacing problem. It has a myriad of uses

in the field of optics, as described by Carter and Carter

(2:2939). It can even be extended to four dimensions for

possible use in the field of physics. It can accommodate

distance formulas other than the Euclidean distance formula or

convex regions besides polyhedrons. Its uses are limited only

by the limits of the imagination.

2. Simplicity. It is simple to understand and simple to use. The

structured FORTRAN programming format makes it simple to modify

or debug.

3. Reliability. It has been tested favorably against simple

problems with known solutions and more complex problems like
S

Carter's color spacing problems. It has proven to produce good
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answers with fewer replications than previous solution

techniques.

4. Successive Maximization. It not only maximizes the minimum

distance, it successively maximizes the second minimum, third

minimum, and so on. Because all points and their distances in

relation to each other are important in the spacing problem,

this is a more appropriate objective.

Disadvantages

Here is a list of the method's major disadvantages:

1. Optimality. The method does not guarantee a globally optimal

solution, nor does it guarantee even a locally optimal solu-

tion. It just guarantees a "good" answer and it may take

several runs to get that "good" answer.

2. Size Limitations. The program has been proven on a problem of

at most 23 points and seven faces. There is no guarantee that

it will work on very large problems. Computer time is the key

resource here because computer time required increases exponen-

tially as the number of points increase. It's up to the user

to weigh the value of his or her computer time to the value of

a solution.
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VII. Summary

I hope you've enjoyed this little trip into the world of poly-

hedrons, colors, and the like. If you've already forgotten what we've

learned, here's a quick refresher. After being introduced to the spacing

problem, we learned of some examples in the real world, most notably the

color spacing problem. We were educated on the theory behind the color

spacing problem and we found out how Carter and Carter proposed to solve

it. Next, we learned how the spacing problem is formulated mathemati-

cally and were able to see some solutions to simple problems. We also

found out how the problem could be solved using successive linear pro-

gramming. Next, we were introduced to a new heuristic algorithm, very

similar to Carter and Carter's, that is designed to solve the spacing

problem. Finally, we found out how well the new algorithm works. It is

now time to identify our conclusions and some suggestions for further

research.

Conclusions

The program works. That was the main objective of this effort so in

that sense, I have accomplished what I set out to do. Perhaps equal to

that was the objective of providing AFAMRL with reasonable answers to the

color spacing problem that are better than educated guesses. I believe

that the algorithm does that as well. An objective of my research also

was to improve upon Carter and Carter's method. Well. it is difficult to

compare the two because time constraints prevented me from doing a full

statistical analysis. But, if you consider that my method runs, is easy
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to understand and use, and yields solutions that are comparable to Carter

and Carter's, one must consider it an improvement.

To be honest with you, I originally thought that Carter and Carter's

algorithm was a crud- first attempt generating suboptimal solutions which

could easily be improved upon. It is a credit to their work that those

solutions are apparently not so crude. But it must be remembered that

regardless of which method is used, they both require numerous replica-

tions to come up with an answer that is only guaranteed to be "good." So

there is still plenty of room for improvement.

Suggestions for Further Research

There are two directions that subsequent research in the area can

take. One is to refine the new algorithm. The other, and most exciting

alternative, is to solve the spacing problem using some form of nonlinear

programming. The method described in Section IV of this report has some

definite possibilities, but the difficulty is that the constraints of the

color region are not linear and are very difficult to derive mathemati-

cally. I could not solve for them during my work on this thesis. Carter

and Carter describe the region as "approximately a triangular prism," but

nowhere in the literature is there a mathematical formulation of the

boundaries (2:2937). This could prove to be a major stumbling block for

anyone attempting to solve the color spacing problem using nonlinear

programming.

Alternatively, there are numerous improvements that could be made to

my new algorithm as well. The most worthwhile appears to be the use of

vectors and matrices to help define possible new positions for the two

closest points. The present method disregards any alternative that takes
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a point out of the feasible region. A method could be devised that would

instead take the point to the boundary of the feasible region and still

consider it as a viable alternative. Indeed, it may be a desirable move

because of the tendency of the points to migrate to the boundaries and

corners of the region. The trouble with this method is that it too only

works for linear constraints. Colors would have to be spaced in the red,

green, and blue coordinate system, which has linear boundaries, and then

transformed into L*u*v* coordinates to calculate the distances, much in

the manner that Carter and Carter's algorithm does.

Another interesting improvement would be to use a concept called

"simulated annealing" to help space the points. In this method, the

points would be able to actually move closer together in order to even-

tually achieve optimal spacing. Refer to Kirkpatrick, Gelatt, and Vecchi

(9) for more on this possibility.

Other less drastic refinements might he to make the program inter-

active, more user-friendly, or perhaps include a color-naming subroutine

that would give the user descriptive names of the colors selected. Also,

improvements might be made to the speed and efficiency of the program. I

have thought of a three-phase system of varying the maximum and minimum

step-sizes and the step-size reducing scheme to hopefully get consis-

tently better answers more quickly. It would consist of starting out

with large maximum and minimum step-sizes and halving the step-size at

each iteration. This would place the points in a roughly spaced con-

figuration. The next phase would have a much smaller maximum step-size,

reducing by four-fifths to the same minimum step-size. This would refine

the points to what one would hope to be a rough global optimum location

scheme. Phase 3 would concentrate on further refining the locations and
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the accuracy with a very small maximum step-size and a miniscule minimum

step-size. The composite result would hopefully be impressive.

Yet another improvement would be to selectively place the points in

the corners of the region then place any remaining points randomly on the

faces, rather than randomly placing all points in the interior of the

region as an initial location scheme. This procedure would conform more

closely to the observations made in Section IV regarding simple problems.

The biggest deficiency of this thesis effort was that the algorithm

was never fully tested statistically to properly compare its results with

those of Carter and Carter. It is highly recommended that any future

effort include extensive tests of this nature. I have found the topic to

be interesting, important, and satisfying, and am sure that anyone else

who pursues research in the area will gain similar satisfaction.
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Appendix A. Color Transformations

This appendix briefly describes the transformations from red, green,

and blue color coordinates to the CIE L*u*v* color space. If we let (YR,

YG, YB) be the luminances for the CRT's red, green, and blue guns,

respectively, then the first task is to find something called the tri-

stimulus values (XT, YT, ZT). This transformation is given by the fol-

lowing matrix operation:

[ XT xR/YR xG/YG XB/YB YR

YT : I iYG

ZT -i LzR/yR zG/yG zB/YBJ Y[vJ

where

(xR, YR, ZR) : the chromaticity coordinates of the red gun

(xG, YG, zG) = the chromaticity coordinates of the green gun

(N, YB, zB) = the chromaticity coordinates of the blue gun

These chromaticity coordinates correspond to the locations on a chroma-

ticity diagram of the red, green, and blue colors corresponding to that

particular cathode-ray tube gun, and are values between zero and one. In

addition, x + y + z = 1 for each gun.

The next step is to find the u' and v' values for each color. These

values correspond to the color's location on the CIE-UCS chromaticity

diagram shown in Figure 2. The transformations are given by:
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u" 4x/(-2x + 12y + 3)

v: 9y/(-2x + 12y + 3)

where

x XT/(XT + YT + ZT)
y= YT/(XT + YT + ZT)

The final step is to convert from (YT, u', v') to (L*, u*, v*) coor-

dinates. This is accomplished by the following set of equations:

L* 116 (YT/YO)1/ - 16

u* 13 L* (u - u6)

v* 13 L* (v'- v6)

- where

Yo = the value of YT when all three guns are turned on full

blast, producing a pure white color

Ju6 = the value of u for pure white

v6 = the value of v for pure white

O0

, That's all. Pretty simple isn't it? The reverse transformations are

equally as simple and are contained in Appendix B (which is just a

listing of the program) among the coding of subroutine "RGBOUT."

5
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Appendix B. FORTRAN Code and Documentation
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Append ix B. FORTiIRAN 'ode and Doc :iuntdt ion

(."1

C (.I .I I, n : ; 0.
I BY
C" HOES H'OLEY

C* ** 4. < > t*R*-*8*41

C
C MiA IN PRO:. GRAMP
C
C THi F' UP F F OF LI OFT-! 5 F' ROG:AM I ST O AX I THE I I-i T 1 31 NI MUi M
C II:S.ANG l AMON N J i:' i NTS IN A CONVEX THiEE -Ii :IENS I ONAL REG I ON
C ANDI THEN SUCCESSIVELY MAXIMIZE THE SECOND SMALLEST DISTANCE,

C THE THIRD SMALLEST . AND SO ON, UNTIL... AL... POINTS ARE OPTIMA..LY
C S PACED- TI'* F FT REIQUIRET IN NF'UTS F OR THIS PROGRAM ARE THE NUMBER
C OF POINTS BEIG SPACED (N), THE DESIRED I NIrT.AL STEP-S.IZ.E (SIZE),

C THE NIIBElk OF CONSTRAI NTS (F:C:ES) ON II-E k-ElG3.ION (F), AND' THI

C EQUATIONS OF THOSE CONSTRAINTS IN THE FORM AX + BY + CZ < K
C THI : PROG!RAMfri TI-Ill: N OUITPUTS THI'E O'TIMAL VALUIES OF X, Y, AND 71,
C AND THE FIRST TEN (OR SOME OTHER NUM1ER CHOSEN BY THE USER)
C MINIMUM DISTANCES.

* C
C NOTE " TRIOLJUi-lGHOUI. HIS PROLRAM, X , Y, AN. ' Z ARE USID r 0 r-NOTIF

( THE I.OCATIONS OF THE POINTS BEING SPACED AND CORRESPOND TO
C L, U%. A NTI V: FOR THE COLOR SPAC ING ,PRODI..EH " THIS SHOULD NOT

C BE CONFUSED WITH THE TRISTI MULUS VALUES OF A COLOR WI-I CH ARE
C COMMONIY REFERRED TO AS CAPITAI.. X, Y, AN.D Z IN THE TRArDE. IN
C THIS PROGRAM, THE TFRISTIMULUS VALUES WI.L.L BE REIFERRED' TO AS
C XTOTAL, YTOTAL AND ZTOTAL.

C

C THERE ARE SEVERAL.. NOTES TO TiE I l<'FF' I N T ll1::F' POGIAM WI-i I Cl1
C ARE UlSET TO SlGNII:'Y PLACES WHERE YOU ilA BE1 REQIfRE TO MAKE!
C CHANGES.* TH,:Y ARE SLIPMAR,-IZED - FO-i '. YOUR CONVENIIENCI

C
C I l MAIN PRO:R(F:,(fj F: Jj: USER IS IO rI!t:i.] TO SU il.. Y 1I:

C NiJ M BEI F! FilPOINTS TO B, SPACF, Til I : tiAX IL UT - I l:-,
CHE iiN]IMUM STE..-.. Z S E, AN' I iF SF I . ZF RV' CIING SCHEME, IiN

(2 SIBFROUTINE PLACII 'P INTSY iFE MUST .Il I. IIIF PAXIt.iIM AI) M IU A.MIN
C IMUM VALUES AL.OWABLEI FOR EACIHI OF Till TINE COORDINAILS. IN
C SULB'ROUTI.:JE FINIl.--.l'5lrS1 ilT : :, TUl lIF:I: M1; -II:H E ,UMFEF, OF"

SC D IlSTANCES HE ISLi TO AhI-" FA- OlHF PIiOAN' FGUIPUT.,Ih- ' UI'!IP I f' I l I I ( )IM A [3 ! 'l

C IN SUBR ll O I ] NF ('IC l'P t(1NI , Tl tll "l:k I1i lEUI R1.IKTIl S(11 Sj'PI. Y
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I. . .$ , . i . . .. .. . ..

C t 0 n ', i il t [ fi I . I I-.', I II l S I ! I.'1" l S I J .'

tI( Yl N I 1.111 1; [I 1 )0 F" I P1 1-1' , " ,I .') ,s AY *1

IC:XCF!"I ID):' ]tli tA, iLS OF K; ( I ) 1M THE MAXIMUM .L5L., BI IT
[[ (7" ~ ~ I Iliri I . ff(4l( r .tl (11 ;! :i 1- 10rll; ll-11 : l hl (.!N 'q . IK (. ,) .... IHL. MOI"Mi(i .111

k FN ( ) Al!i 1 N 1- MFN I - (,'.J 0 tN)iNT'I .NCH ; ll. T-llt X-COO I INAT-Fl

IY ,( I ) . J' IL r I)i I i) T F (k, I 1 L

C U ( IJb: Tl HI i i ;:I liE A N C'' I AN-Cl Y E t JE1N C_ ] I- NT I A1 P N J

c- l>r ii !C1UR: RENT i, ) [1 i- 1 Ii MUMI.''

C* (:I: t: II I ,MW 1:ii:fR LING liT L MS SU 11J T% AU 00 IS VE

r S I( I1'F TH. ST:PE- , lT .S: MUST SUIP.Y tH CHROMATICITY
C E ( ), 1 'TH X-OFII..L GtINS TII FEXII LINACrE THELOWEBI.N

A ri, VALUES.:)OF T P. IE NOT NDE VPRIE NOT. T'

I rum"il I T i', r o " i ,.i r.' N'<.. t
C J11 Y KT N1 ZOC~Fl~'l (32 FNUF'T !HT NTE Y0BEMAE OR ANTYnu.>:(T< 71:: ,lll-HI TIN f I CTU OR Tl X- O IN-I:O

C ISF O F''HNT I

.C VARIA .BL .EI. IIAI TION' " .'f

S C X(1) -'" A OE THISAL ARRAI [ITAIING THEi I.-CUfFlN'E O

(* ' C ( .,'HX KY ,.. 1) )( I II X: C' ( IJI DI {< lt! , ,,A f I .['( TN ;I F f<I I -I E FREYII(II iIII f 01) I PATT UN

Ill-. " 1 qfl Bi!.. PH -! - If N[T .I F I E:A IO
* ~~ ~C ['tiM]. FlI.. R? f T'M ' I..Ml V IIA' 1 FCIJI[<I FR SIEIIuTIE PJB

C P:OINTH T
C Y( I)- "THEli Y"'C(ORI;,I]NA TIE O.'F P'OINT I"

C Z(f)- [ FIhF. r -coOITNDT' ATl1A OF POIMT D

I] rirls'e T..]HE CURJ::RET II M M DEiSTl ~N(C.E-..  BI- lEW EN A"L.L PAIIRS OF P-:OINTS

C NE, I I lfi (r-B, 3R I IJN Ai S THE NFl MINIU RASANlCE
(1,: SI ZE... - I HE STEP7F'- SIZE [:
C IENDX(I):: THE£ X,-COOIR,,TINA'TIF] OF E:NDPFOIN'T I,. WHEIRE THE END'POINTS
C A RE. THI"E T WOI.. CLOSES).. ";.>T P"OI.[NT S I N THI"E R-EGI".. .."ON

C IEiINiy ( I) =  T HE Y-COORD][.(. I NA j ~ 'lTE1_' OF E- NDPO '11' !IN i.I-r
C; 1-* NZ.() T<] ) ... 1IT .Z---CO..ORD~fINATEl[ OF.11 ENDP;I:OINT I
C A"I. 1X (I .,..I)-.. TH I- ;,IT H AL ITER 17NAr TEI.  .KO CAi' " -"IF'( 'T I IE X--C O OR DI1N 0l1 I- OFI:

EN P N 1 I-
C r'T*.t .! ) T* .. ALERN . TE .2l "TT FOR TI_ j-COO!D'N',T. 01'C; FN D[I '(][ T I' 1

C irl.iX f)-: THIF X-(COOR]!i/.!NAh:TEl OF 1POTINI I FROM H E PREI I'IVIOUS ITERTI- ONIll.
I, it,.i [)- 1tF f-.COORHIF,:F O7~;-/ Fi POE1. ,-. K[ FR:OM THE iP'FEVEIOUJS I TE:RAT.ION,

C H.MZ(I)-: THlE ;.-CIJ]I'I]DI I.Z OrI IPO(I fN T I FROM,(] THV.- F'I- DU.-T IO.S I'II'n"F'TIOi".
1(7 IIM.I , !J..I'.2,UUMII3. DUMM]Li"Y VA,, ,.R IABLE. iS REIR:.L ]1ED. FOR SUJBRO UT1I"NE RGBOUT

C BUIT NOT U..SED71 iN, TllHE MAIN PRI~'OGI RAM
i~ ~ SrFD T:l H :] C ~l! STA:.rt(NG VALUC F~: :OR:, THE RANDOMIT(] NUMHBER f.F]NERAT[NG SEQIUEN"C;E

| C I i", "NTIill.: cYIr(lR KNOW,,N A~S SUBI:ROUTINE- 'RA NSI-T" '
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I I l T F I I t N1F I I I 1 . I I 1

I 111F 0, 1F F T I*'~ r'; 0 FI

* F'

r q F AT IK T (d I I I FO FI ED AN H

IF,++, .. .1tl (T F. F l I i Tl ,I ' F; T IFF t. F:' t ,(r .,'l(i I lt: FI.l irTIK+~1I?;.( T

* I .l [+'] ill. i'TFF, I: FY:'I] l T l I I 'F-3~l , :I". i >

f,*1t1.' * T tI'I,, f? * i ts $,, to'l~il A ,

F' F'*. '1 t~ ,4 I : f

(+

~:.REL .X(5).: 01.!5 . -. :ICAP ,N WI' * srZE y. V rX ( 2) FNI'YC )

M .MN:Z( 5 () ) U NI (50{~) ,DUM2(50o) UUM3(50 ) ySEfI

CHCIIF,2TER k 1A TUS f4 ST ATPFTI( 3)) *:1
'EXI TERNAI"L AN:'

OPE'N (3~, jzILE='5PeF.('(JI )
REWIEND 3

(0-2

(1. M~ i 1: TI. I: t r I t~ 1I i. 1 " N-, , .... r.-:, I. s i :tl

1(12

C

c THE US1.2ER MUST S UPPLY T HE V ALUEJB (OF N ANT I 1ZE HLREp ANDI Ti-I S I ZE.
" AGAIN I' Ni SU ROUTINE 'IXOINT.' I RECOMMEND USING A STEP-S IZE

C APPROXIMATELY EQUAL TO ONEI-HATE.. ' ISTANE BETWEEN TIH E TWO
c..* FARTHES2 T P,,INTS IN TII C.RF'N , BU lHt USER IS ENC. OIAD TO RY
C ftK. ISAME PR tM WITIH ).RAL DIFERENT MAX IMUM STEP-S ZE S T

,IICREASI TL CHANICES OF TING AN OPTIMAL" S.OLUTITON.

SIlL.: 30.0(
=10

I'll)"1 I.-0( N ' I. *I' +, I F"

!'o T A (1 f : f:N-

mI-Ti ( ) -. ()

I1.00 (2ONTI.[NUll:

C

(1 I- rMPOR'TANT NOITE TOl USER

F. ,3i! ~ ~ !UIFOJl I'I "I I "F' I T '-."I)'IE I. S N P3 '3 cF S .~", -..

I. .F. T I T O
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',,: ~ ~ ~ ~ ~ . Ri, , ,, ,, -,, ' ';t , i 'I fl , L ' 1 1.~ L ,,g . r , , r I Iq I ,,

N~I I I -. l

A: l- .I U I -, . 11 1 N; I,', -r ( 1 . Ci ) I I I -I , I.) I:I r0L I T-L ' I;, I I I I F~ I I J f[,!

1 10. r01M l, I ,% y T ',I F I. .
I F I c T1 I: t.- UI L 1. ,5 ,"', ]* N 1 0 -0 4

C 0:1 'HAI . IO-'I-: i I I I L. I..(L:C OF S A I: EN

C 1 30 I... F I .I ( X 1, _ , o, ST F l: I:T D
W R I[ f E: , 3 1.0
F , 2 0 I:: [VI,, ( :1 .1 T 1, " II E I - T H E -. f l e S T T W"AN~ i l (] "~ I O ~ ;

C, A I. L_ :: N T (X , Y , 7 r, N)
C A I.I _. l~ 3 ( . r l B o u 1 .Y , Z , N l 1 -I u i m :. .1L M u , .m I u Z m ! '; h l U l S )

S T .ST 1)S::::"
(C THE IEATI (OF THE 1:' F;, WO 'A BE. (7" N% CM .1-1 H:.: 1:-,1 -I:.

].,SO~ ~ ~~~~~~~~ ~~~~~~ 0~l.I. F [I [ ( ,' ,: , , .T I :' ', . I'l I: E 7".i" 1 X ,I.. W O Y ' :I : N 1 11::"l]. E N D P'T " 2 .,

1%S3T A" T U.JS3)

CA Ll. iL-FAI.. ( E:NiX, ENTI'( E Nr'. 112 S ZE: 1.7 E IF"T-I. N ENTI-T2 , ST TF:"T
, AhL X ,AT Y, 'L TZ )

CALl CH-K LT ( X Y, Z T N , CAP, FTX , ..-" , _TZ , S T I:T INiFT IF. I -N-T Tl NE.I.II )

C I F THE H I NI MUM 1i [STANCE IS GF,,: ATE: :, H E N:'-" I' T EI'RA T I NG

IF: (NEWD .0T. Cf'') THEN

C AP1= NEW iD
GO TO 130

C" IF NOT , THE-N REDIUCE THE STEF'-SIZE
FI..SE

S IZE :7 [ *.:.: ! 2 0

IF" (SIZE .1-E. .0001) THEN

C NOT:* THE U.SI:Fl MAY WISH TO USE A DI FF-FENT MIN:M[ M STE7-SIZE.

C FOR THREE DECIMAL PLAC"ES OF ACCLRIt)('Y, T[ USIE 10001. YOU

C MAY ALSO W .,, SH TO USE A SCEMIE OTHER THAN IH-A.VING TI-I:T:

C SIUE, L..IKE REI'UCING ITr BY THREE--F0LJF:THS l:NSTI l.

CALL.. F XFT ( x ,o Y 7 Z, N Y . ST T EINUIT I::'IT .NTIIF:'T :1. . E N DF'T 2 , S I Z E ? S T P T LJ S
& MEMX , MIEMY , MI-MZ

T F "ST IJS F EI R.N ' ) "T -I E.":N

GO TO 130
E L S I - I f- ( S" ,-T A T 1.J) -A I . 1 0 FI ' ) TI H 1 'N

C 0 TO 1.40
I. N D I F

0( T 0 1,30

• EN.D I F

C 'THIS t_.CIION (0NTR C)IS "T . F ORMAT, (F 'II .HIR FI:'SULIS
140 WRITE('3,150)
150 I:ORM A ( 15X' THIS IS THE.I FINAL. A NSWEI'V'

CA,,... F'Rr T(X,Y,Z,N) 
-:

CALL' lU t(- ,

C/ I..I..~~~~~~~~~~~ 
0I]O 

T(X ,Z ,]EU .. ~U 2 B M3
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.C..

C

C N"E THIS SUBROUTINE(3}]'! USES dI THE(RANO UME!GNRAIG UCTO

C. A,! RAt:DOM N F'MBU , GENERAT :ING CI_.I.B; I"TII[ SO I: CN SUL YOU (LOC(NS F ] H

C "i Ii( I FRlDRCTIONS ON HOW TO USE IT ON YOIR F[IAVORTE:

[[p ~V! f IH b AB :.~; 1 ::r:rr ., ',I aUE (> (. I-,v j..['( ...
['PI:EON£ ]" RlIIH !:'; , (1;l I.i 1.F1,1T1''. (' Cr Fl S.I.?:.. .I , 1 (] "1 ""I HO ""i 9 F P I

C K VMI.'I: NF, H:: F:'::.F. F:C !': L):fAP;E ." b' I !S ', T H(. ST O USE1 IT O N I YOUIS I(f; 1,I ITE

. S- T M .[. ' v

C

C

C III~~CF:: 3 .NO ii Ro s: t l S 0 o tu I;ps 1-1:F 'I iNO sl;(IPH :01I AGltO

C,

C RVAIAF[P P VANAL ION
" X ( J ) -:: THEI IN I AL.. -CO I NATE OF POINT I

-. ~ ~ Y~I(II)= THEww INIIAL Y -COORDINAT rjOF POI:rNT I
cl ZI)-THEl: ITA Z-COORDINATE OFPOINTI

c. YRFDB(1) 1-:-- RFEI- PIIOSPHOR .U(MINANCE FOR POINT I

"" C YGRE EN(I) :::: THE GREEN Fi-HOSPHOR LUMINANCE FOR POINT I
C YB' I..LI-I(]):-: THE BLE.J 1l1 HO'H OR LF'HC-F OR ..UMIN AN CE FOR POINT I
C SE1:EE:: [ e STARTING VALUE FOR THE RANDOM NUMBER GENERATING S3EOUENCE
C IN T HE CYBIlk KNOWN AS SLABROL]UT]NF- 'RANSE /

C

C:; I. NT IE : VAR ILABL ES:
N,.. THE NUMBER OF POINTS BEINHG LOCATED

I:,: THE NU MBfR OF POINTS BEING TRANSFORMED BY SUBROLUTINF 'IR11 30UT /

C: ."CHARACITFER VAR I LIES:

CI H TI A S S-UPRrT I >(P

(1 I iKTlI:0 !' . VAI-:]'BI I--S]<,;

i('F A VARIBLE T IU1. SED IC N CONJU..INCTION WITH " RANS-.'- TO ( 1 Nt P:l V
C( A RAN'O N NIMBER BITWEEN ZERO AND ONE

C
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1. N" TE 1F ; 1- 1 f:t' .

r,

1 1() X ( . RI A: NF I "t: 1 .) D.-' .  0 9 < .(

. F:' c-:::' l , ." . . .. 0 0 1:) 1 (,::i 0 " 1,... > : 0

C 1

CC

]HI k!P, , , ] P "l" l.i- F~r~i!) (: . ?::fi. IT'. rI_: I N >7 -1', ' :1 I* ::: ) I- . X'lq i .,..:.--( l9 U'

SD' 1 U IN I" RON
JJ...I:" Ti: .I U: :: W,,ANT,:: VL,,g.. .... T'DliIF " F 1THA " RANHGE, THE', .. .QUALItTIO'NS

(vm F:]'x , Y,, rAND:l z-. S!.HOU]LD I O(1" IKE 1 TH4 IS,.

(CI Z(1 ) ., ,F () (zM x-Z IN)+ZM.[N

C. WHEREI!I:;li MA X AND MIN ARIEI THE- MAXIMUMJ AND.:{ MI.NIMM POSII :BLF VALUE.S
C" FR X A A;ND A RE-SF'TIELY.

(1 113 KUI P,.I. F. 'BPr' (- / F WI-IS I I ) 9J YFt-I (1 N ) DL F:ON ,F [PN F.F YBIUE I) (l IU £

(IF LC L.I.. WANTS Y I I(3 S l( T) YG F 'EENI( F ) I,[YBLUE A( NII , 1- INT .
(7 U F Y A(]~NTI 7 U(L.J "i I T" IN I F. 0 UT IIL: N

,. !j ['.0 "TO 170

(17.END I( 'F'
160 (1"::;i',KT)I *(MAUXI- IN

* I F: >7 7 N <SE(7 3VL

C

.- T

"" (:; '[THE~ PURPOSE:'] [i OF lT-IS] SUBRO:UF( TINEISi : TO FINDI THE MINIMHUM DIS:'--

CALL. CHWFNP (K y9f(I )1 NUMiBIE OF I (UFIE) PONT.T

INPUSI FO KFONT H ROGRA FR / OUT TH NLCT C" THI': F'OT.iS (X,

• Ci . Y, AND IZ), THE S,;TAlT.US O::F ITHOSE; POINTS: AS TO': WHETIHER T'HE:Y ARFE
.Ci : F: IXIED ORF' UNIX...I:FD ' (STArPT), A "ND "THE: NUiMfB!:FR OF' FPOI[NTS (N). THE-:

C PROGRAM(1:;F THEIN O. IUTUTS THt IIU ULDANDSAC EWE
c AI.L. :Alt OF (UIF XED) ... I NT- THT TWO PI: NT THIAT CORR0ESPON

lMT IN.IMM DITANCE ,-N TI BIDD F1FFT2), AMD THE

C. AK) (.0 N TIE-NU l

C

4C SUDR I IF, 1. ~..! )-I:F: NI i T N :

C 1: •1. A
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C I II I I (I Hi -

I.C

N T I i Il t I l

V 7( :31" !'*f i 7S. t I Ii <' I !L V1 I' - :(i i I 1 .(3 . (II (1! I ifli I * I 11 Ii! r U ! IX ~ n~

V 17NTi'( : llt- ' ( 1li(.fl~f~ lh (iI CIi'I1il' I

(NjI D1(1 ' I illi f [1 I
IN1. I II: . . I i ,I .w , l i I r ( 1..ii fi1i.3 I.

A. O If 11 -'. fI I ('[ i., 2 Ii 'I< i: N (14 1 I H N

.iU ,I M .:> 1,111- ' .U H .1iH 6 i A i I-I I t ti i : . I ., I i.!1 1 I
SN Pi ' I H ,. M NUMIM :, ALLA'' [ Y ED WT Il I F. N. U I NI 

C I I 1 ll t:: . I I- I' t. 1 3" i 1 . 1 M l: , TI I NC; 1- 11.. l EI:"1 ST C 1f
(2 C.:: I[ : U: T H L I I S [A N f 2:3:8 I IC S T S1FIFUU.. R i 0 -ll S F I F 10 k f
C [,Y Fl 1- ): AN F* N C'r., N1 I C U. ,' .1 _ P ,N T f"' C.3 N [II S A I. I.. F. !% D ( i

* " 1J_ : C N )I 2 T !.I F . (i -I K [) F N: ['SI' C)h I- NeT C 7 U (lI .S.L FUND, 7IG :,,. T ( IN:' S A LIS F:. ].1

C JA'Y 1" C il :: T H.. T ATUS OF)[' lINT{ 1 F I E 11-1N T I H.IJI' N TH m iE.. .. ) .,
C

C AT,1'AiT !''I I ) H F-: rI 1- S] T U!l 0 F: 1 F'0 T I NT I F1-17 H E-7 F' I* TXI' 1 C.)R(]!: .UN F :X 11
C:' SI T T .U -S THE SrTAT...S OF:: T H-!"] P R,;f.)GR~i' A , "- E I" H, i.. 1 r'. i,.- rt m IR LIt

folCc

SLII:ou;ILr ]7 N', F- T NUT' '", 1I "X r /" N ' I S'T AIT >, C::l:iA PD 1UN'iX FI'NT'Y , E'NDI EN DP::f-.:I" I. 17 N [Li::T 2-

X STATUJS)
R ' A L. X ( O )0 Y ( ) 7 ) ) 11 AP v C : N i X ' ) ,N .1 Y C 2) EN 1 i'. , y 2 U 5 0 i 0C) y
8 TiNS ( 300 )

I NT E -FR' N , N DP F I. EN D L'T , I.,1Y C 300 A Y C .00
- CF-IARCT R :AC STATI C R T 0 1. ST 0 T U(.;*4

DO A P 12 0 1 N- 1

DO0 210 J~I1

I_

ID .1 NI. L };: F S S .il-I I' CI IN r] V > A F: I]X . 3 . C (12 .. (i: [.I. AT 1. Il: l DI SI NIL 1311{; ',',[:l] 1':!.ii 31.-N IlIFN
*1:I: C, C.: S Afr'f-T (11 ) * fl;U '1.1) * .1: (,'3J7T'~ ;[ T C,..I) .E. 'I.J' ))

( I'I ':II :1: ,,
E: H~ 1[ F-:1 T j :

F NI4r I IF

2 210 C I T I N U
200 C:(CNT N l111

EN'i'91[ X (1) -X C EK I T 1)
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III iiX(I? I H10l II'

-lN " .(I iI., I

['~( I N il C ,I

-,D, , 0I 2'H 10 I H . Ii N NTII i TO S. 1.19 I T

(ill v' I) ..1 L300D . K'.T") IH.

D 0 ] 1( 1 1.

... I I : ,,: ... "" D " ; S M " .

i:(. ',  i :"") iy
.. .. ( )H I1. 11 -

.00 -..' ":F.,U.,. EY-1(M-13)

JAY ( N) ::x:JAY1(9-"I

.00 2 LfT0(, -- 1I( I i,)

EYE ( K ) -
JAY ( ) :=J
GO TO 240

END IF
CONTINUE

"2'4 0 (_ON T I1 N I.!E
230~C C' 'F t J E.']I.

W,', I..I. (3 2() )L
Ii0 290 K=.:i,L

W FI:' T E ( 3 .295)EY'(K) JAY(i) . IS (i K )
290 CONTIN E

W R' *1: T F: ( 3, :? 7 0

0 'q( "x

2...,0, I:[IF.,tiAT ( ' ,/

2 8() FORiA " Ii X i - UI E :i . 1 N 3 ' AII... 1 1 R NANC.. ' ),.. 1

C,,: 1"01: THI ' UP OU IN 'P" TO El " .- F'')='F FFF 7N,3)

C9 , FORMAT( 19XI V( ,LAO 'O2NPI', AM.)

C

F:

4 C (PAE IOURT' I NT iES OP TH_.S iF" iO'NI AND THET :iFi, 1 F.
AND OUTPU TB A IWO I-'Y WE N F Y SEVEN ARFF;A0 .O TAT F I N; [Hl
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o : 10 * C .- I- K- I ' 1. t E. J I II .14

F. N' l.l 1 0II~ 1 f ( I *I HT ( 1 :.1"',
C

(2 V'i M 1* I ) I l (11 ('PH NAT 0Ii: 1 1.11 .. H A I12 N61IL'r F, FIl M f P. 0- 1I N
C ~ Y (II: y 0 '0'1 D II N, T I' F V. :F Ji Al F El, NAT F, Cl FL (1, 1, '1IF(1

F7 I. tT16)1 vr'l:. 11 n h. 1

C F NLl?:: T IE A L FBI 8 - TORNIESP() I':( NI TO: ENALD NT V R *AI1N
(7(f%,''NAr* D* T1E T HU. X FOR 1H- HFT.'N 'J I AF CR)TE L., 0 1 Q.1(C) TJ'

C A ' TH ( I:: I ST AE A1 LF T. N I NA T H E F. :0 XIE TF: UH I XS

* i c

S LI. isH0 I T A l ~ NX N NDY EN D ST ZXE E ENFT, P T E NIF'PT2YSTAe TF'TAL.-T1-XY

A AL fi y 27),

CIAA L- T MF 2) 2 o)
(2 1 .1\-ISE F (.41.. I 'r 1E A TRAI (61 H O!E~iOiT N

F1:1. N00 1 1 :1 'lD1112pF

LII I- I R ::.. C- : T T " -

I' AL T2 ( ) L:INTl)Y (T) 2 5IX

300 C.(11 N'T .1 N II.
(2I N i>11 Hl h1I1 TXF[I TIIE -It HAS NOl AL-TERI:NA)TE POSIT' IONS

IN IS FA"(KNI T 1. L, 'F[ THEN
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* 1~.. .., .7 77 7.. ;r!1> ,

.- - . . .- * 'AL I Z r S)v , -LNI D ,."T f' )

3 4 0C CIN T T] H (.)I

I1'it I ) N I,' jf
I ~i IF (STATPT(F.. 'y) N U H '

3 .t.) C," 0 N I I N U [7.

C

C SUBF(UTINF C'.IE.CK-\-TE . -. Y I F, '1 ,IViS,

C
C IHIS SLIBROT:TMINE CECKII;i IS TIHE VARIOUS 'ALTERNATIVES TO] SE:F
C IF THEY LIE IN T:.HE * 1[.ON, IHIEN TEST'S THE REMAINING CANUI ATES
£ TO SF EF: TI.-Y IIN CRHEY OFR.,' IECIRIEAfSE TI'HE.I [ t' : " S NC; E B WE EN TI-I
C ENDFOINTS. IF THE rDIST'ANCE IS I NCREASED, THIS PROGRAM CALLS
C SLBROL UTINIL 'F]NID-DISTANCE' TO SEE IF TEI (JVER:Al...I.. MYNIMUM
C DI STANCE IS INCREASE D OR DVCREASED. IF SO,. THE ENDEOINTS
C ('RE MOVED TO THE ALTERNAFE LOCAT'ICON THAT MOST I.NCREASES THE
[c OVERALL. MINIMUM DISTANCE WITH TIES GOING TO THE AL...IERNATIVE
C 'TI-IAT INC;REA,SES THE EN DPIT DISTANCE THE MOST. I"T THEN PASSES
[" THOSE- NEW L O CAn IONS TO T(H E MrAi I N PRO".( GRAM,.
C

C

C

C RIVAL VARIABL.ES :
C X(I).--. THE X'-C;OOI TI2 ; [ '[ N OF POINT .11
C Y(I)..: THIE Y'-C(OOF:IINAT TI I O P POINT I
C 7 (IL) 1 HE Z- COOR I' I NA I F I F I .1 31
C CAPD'. T'HF MINIMUM DIST A NCEl2..1317, IBETW IEN A!..... FAIR.S OF" (UNFIXED) P(IN'T'S
C AIL..TX ( , TJH) X-F D..AORO[F- THIY J FL..II.IKFRNAT IIVE FOR ENDPOINT I
C Al.TY(I,.J) TH T.I YCFOORDINAI. OF THF TH AITFRNATIVF" FOR IEINDPOINT I
C ALI C ., J TH = l R Z T-I II M l oF F l lll ,.3 TI ALI E,P'A lIlV FOR,: ENiIDPO.IINT I
C N I ,, WI :' T H IK: N F 14 N W I N II H UM It I 51 l N Fl IF B EI W l IE N A I.. I IIIF F' 0 I N I S
C1 CiIKX(I):-: TiHE" X-COOIIAi T:ii OF: :OFl, I BIN-.11 G .ISCKI.1:. AS A NIEW
C LOCA.TION SCE!M BY SI I1-F,(UIT.l" 11NHl:' "FTNIT'..[ STANCE
C ClIIKY([) . 1 TlE Y-C..COOR IIINATE El : F '.( ITNV I BI-Nl I G C HEFCKE D
C CHKZ( ...:I TIHE Z-COOR'i NALTF OF POUNT I BE-ING CHEICIILD
C lUMJ.,IlUM2, DUM 3= (I 11MiY VAR31AII' I..IC S THAI ARE IRF RETURNEDI lBcY SUB'ROUTINE

NC ' IIN - .DI.STANCLI' T'UT ARE N(JT IUE IN THI S SUBROU INIE

C MINID: lH11 MIINIMU i. IS AM C.,UIIIK B(I.III Il!. DY SIBROIJT.INC /FINID-I]SI.ANCE.'
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- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ W 1.7-- 
- - - - --.-. ,- -'---~ - - -

* C F1N 9 I' D- I BJ THE D S A NCE B F 1bJ IGN FNDPIi'.INTS I AND .2
C rl~( YHDI' 1HF VAt I.(LUL OF1 AL.TX1I,.I) IN RF1li ,, i-BUL2ACF

*C~ YBN (,) THE VALU OF ALZ J IN RU SPACE: (.[

* ~~1-:NDPTI4 rimi NUMDF ASSCI w v A :1 W N ITH1: (lii..iTI1

C

c i..OCIAl..T I: *. THE: L..OCAT. ION OF THE. IT ALTIER NATIVE ::FI F EMII l tNT

C EITHE Ii tN OR O UT
C DUM6:= A VARIB xIL.E RBIREO FOCiRu: SUBROUT INE 'RU OIJT' BUTi NOT USED

-- C IN THIS SUB~ROUTINE.-
C

C

C
SUROfUT I NE LI-IKAI.T (X ,Y Z ,.N, (12P.'.AI.r ALTY ,AL.TZrSTA~fT, ENLPI,'

ENDF'T2,NEWL')
* * ~REAL X(50),Y (50) ,Z(50),C6Pri,.LTX 2 ,27)YALTY(2,27) ,AL.TZ (2,27),

N)EWiA,CHKX(50) ?(2NlY(50)?CHI Z(50) ,DUM1 (2) , t.M2( 2) CIUM:(2),
* ~~~. MINt',MAXENLI ENIPTI ,YREri(.l.27),Y~r N (2,27) YFL lE(2 ,27)

- INTEOER ENiPTI ,ENDPT2,N? LUMi4,D
CHARACTERI~ STArTr( T() ) * ,L.UCAL.:TC2,2.7 ) 15 LUM~e4
NEWDi=CAPfi
MAX EN LiC APD L
LDO 400 I110

CHI X( :E)=X(I)

CNI Y(T)=Y(I)

0400 CONTINUE
C TIIS L..OOPF CHLCKS AL L 54 ALTER:NATI1:VESL TO: 13E~I I F THLY ARE: 114 oil: DIJ
C OF THE REGION

DO 4:1.0 S=1,.2
DO0 420 T=1.,2/

0CALL RGBOJT ( A!TX (S , I) , iY (S,T),ALTZ 51I),. YRI.Ti(C, f),
4 ~~~YGREEN CS&T)YBLUF (SAT MFUMM

I ~~~~CALL1. Cl-EKPET ( YB ED( S ,TI) ,.Y U I N CS T ) ,YiPlull:SI),
L.OCALT(ST)

- . 420 COINTINUE
410 CONTINIJE

DO43(0 T=1,27
S ~~IF C LOCALT (1,T ) M.* 'IN' ) THEIN

LDO 440 9=1, 77'
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Cl t: 1: Tf (I L I' I,, T H J1
L0 I: 'I Dw '312 (AK L I 'XI I h! 1I XI 1. Iii 4<'~ +.j.1

1 M I Il.'. I'M 1ii C I Ml. III') iV

C1 I: K 'x F!1 1:111 ('fl Ii X(1 l

CIA:KYX(I1'fl-:) AiI Y(X2y)

&1 hUM 1 .v '1CJM 2,E U [M13 , IDiUM 4 DBU MS 1011 M6
C TI F T I F- I N.I 1 LI U M li ?I I A N C 1.I' S 'FI 1 S A M I D.11 WI * H- A C3 1:E ATI'Rk 17N DC It 0 i '1

C; (' SlANC [j (JR I 11. M~ I.*MUM , DISTANCE" IS, THTE I-EM MOVEa Tiff
C I Ni F' m f L'i

I F((1 1M .6'*. NEWD) OR.* ( MI Nil JE
4 NE-'Wt' AND.* ENDPIT *T'*o MAXIEND ) ) TH-F N

NE W1zM INDI
M AX E. N I:: E N ID F Ti'
X (F:NDFJT1 )Z=ALT*X( IT )
Y (ENrIT1>ALTy ( IT )
Z ( ENFIPT 1) '-ALTZ ( IT )

X (ENIPT2 ) ALzTX (2;S )
Y ( EE'P T2 ) =:ALTY( 2 S )

E I l I F

N 1 '1 F'

140~ ~~M~. CC ''I .

1 30 CONMT 1 M UE

C

(II IN i C5 SI~u1 F CF:ECK F'01TMS To SF :r l-wI:Y ARIT. NO
0111 0:71 HEF TT ~lN* I CHECKS THEM AU.AINS C A SI'OF EO.JAT IONS

* c ~CUN'-1[1. N I S ) OF' Ti-lU F OR N AX + BY + CZ': K WITCH- MUST' BE"
1. [JF>L T FA' I BY 1':1F. 11SF 2N' ANDI TI--F 'M (JTlTTLI1S A CHARAC 01.1---. VAlRlI E

C. 14I-IC .1 E-I IlIi'1I1 F.'S WI-IF-11THETl' P0 IINI IS / I[NW OF! / (OUlT.

C N OT F. : tSUSIJEIROIT I 1:t S. FOFR L 1 MEA : CONSTRA Il MI ONLY. MOMN--
I... t MEIAR CONS IFRA ItMTS.-) MAY BUl USED BY CHANGING THE EQUATO FR

C V (S ), FluI r F*'11Y MUST F CUNIVE .X T N 0 ilER F OR IAHI ALGOR1'FTIlM TO
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C

C PL. F fII.: !L[." ' N -1. 'f1 H lS

((

, I )I TI: (N T I ff ] .l-I. Is 1 NTI E

1 1 j 1. 11' 1:: I ," (.[7i-'. [1N Il1 H I- P O I N T B I: N .  i _ l-

C C (A1 II 111 .1 V( II .,II I.IN TL. (I- I. Ii " OINT DI-'.I. NG TT [U7
F. li)- 'll l [ I CF: I K'NT OF X fN CO0 NSTRA AIN*M"T I

I Hi. (W ill t c:,I I:ii OF7 Y iN (-o - , * ,0i A N' I

CI I 'Ofr f:1.CEFMNr 0:: .I IN CO() NS TRA MINT I
C I f ): I i. ,,l iTl: 0 T-II lI[(31-l HAND <;ITiE" TN CO.1.STIAINT I
U V I' I IL VAI IF. OF1 C.ONST I, ANI' I ;VALU.ATED ATT HE: POI NT
C .I. INS Ti SI I'l.
C
C ].N T Eii1 F., F VP,..A I! [S :
( [:=: T H II NUI-sF 01F j C C S C CON-IRA :.NI , .) ON THE RE(GION
C,
C CHApA CTRI:.,IF V A I *1 ABI. ES
C F:'OINTI:: THE LOCATION OF- Ti'HE IOINT ; EITHER IN OR OUT
C
C
C y *1* *44*44 'l k* 11(** *4 *******V**************W*t*
C
C

S U D' 0 1 UT I N E C II EKf"I X C COO F' I Y C 0 1' D Z C O R £1, 'O I NT)
I179;ALX "E(.}OB , Y.C:OOID CO F:..0 A C.10) 4 ( 10) C(1.0) ,K( 10) V( 10)
i Nf EIEI I:: F-

C H A AC I F1 I POINT *3

C ...... IMI'ORTAN'T NOTE TO USER

C 'Hl I.SIEF, MUS'T UFFIY TlL. NiUMEuiYF OF FACE S FOR EACH NEW PROBLEM HFERE
C

c THIS I.[( ,: 'F1 [j1 ..1 S THE[ AT ZE"O
1,1C.) 500 ,I:

(.,(. S ) :-" 0 ')

* I 5 5 g') (

i-'(') *)0 "0

* 0VO)() (1,jN I}T[ liii

C ...... iI '(OI:, T r N(J rI.: TO) 11S.=.F: ..

C TI. 1131 F,' Mil!'I:ill.II I..Y lil* IE-(.UIAT IONS F:OF, TIHIE CONSTRA>¢INTS IN IHC

C F (1Ff"~-i AY 'f BY 4 (7 / K .1I 1-1 :7 MU ST I'E[M7 III. NE , AND PROVIDE
C THEl VAl I..IS 0i1 A ( ) A , P S ) C C yS) AND K(S) FIE S01 : 1. TO F,. FOR

64
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- ,.. ~ ~ ~ ~ ~ 4*- -7UW rw r ------- -S

-.~~~ K %'C I. NI 15 rX b AY r 41' 5*,b* ' * ,

C,]C 1 4:&)n . K -5 1 V [' ',. , ii 911111311 CONS I V'.0 I1
C Ts x 1, THEN A(2)-i Bf'j::'( "('?)v ANDr ? K(2)IF A

C C(INSIRAit I" .! I-IS & (LI: HAiFP IA N ITt THA jGN, THEN REV ERS'E THIE SIGN BY

(" NE AT I l- TI CO ' I : I N , FOR I ...N " * Y ' " 2 P .CO .SC . .- Y L .. L . . ... ...

- ; "111F C{ONlSTRI hN[ 'IT ES ANi, .(UfI...I IY IONSTAIN I F I :(N F F RM TIWO 1,1( Al I(lt-IS

SWI11HI I:01,(I. Ir 9 I ( II CI' Y I Z : BL ClflM.S Y ! Z '

- 'I'iJ -" --f .2 5 S ) fj(c) .:J 5, A,. C,') I K :4)-5y . " (', -': y

C B (: ) -"I, C!('to) ... K, ' (K , V YOU II k",V ('& Y I:OBI. 1 ,

C CONSUI..T y2OU F L.OCA.. MATH I ' F....
C

* . (i1) :::1 ,. ",

[ ( 3 ) I : )
A('1)-.0
A(4 ) .... I. ,

( 5). 1.0
I (7) ....1.0

B(7) I 1.0
C(7)=-1.0
K (1)= 5T).0
K(2)=160.0
K (3 ) =20 .0
K(4)-=O*O
K(5)=O .0
K(6)=O.O
K(7)=-2.3

C THE CONSTRAINIS AS TIIEY ARE SHOWN ABOVE CORRESPONTD TO CARTER AND
C CARTER S CONCEPT OF" THE: FEAS IBLI: REGION FO: THE Cl.OR SPACING
C PROBI. EM AND LOOK I.. KE THIS IN RE' GREEN, AND BLIUE COORDI NATES:
C RED) L 0
C GREEN 1 60
c BIUE- -1- 20
C RI..ED 2..' 0
G" GREE-N 1 0
C BLUE 2 0t" 1 P ;- P +P 2.. " ! . .. .2 3"-'

POINT- IN'
CTHIS L.OOFP CHECIKS(, \ : THE POIYNT AU3AINST lEAfCHl OIF TH-EI CONSTIRA¢INTS

DO 510 5-10,

V (S)- S)(S)*XC TiI(, P-. (S)*YCLOIn (;(S)*ZC(( .
I" .V(S) 0 K(S)) TI:.iN

F"/ f:: 01.11l
00 TO 520

510 CONTII(I-

520 EN!D

C

C
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C D I S AN I''s i 1.( t, Ir-, I ' II I I', I . I, ] N f C t) 0 roo( 1'.. 1'*',
.I II I'TJI-U V UI- I L. "I. T ; I iI .'!. I I ,

U F~lI iR IF IULliIL o: M) . Nl 'I:~A 1s 011 y TII 'TI 1 1,

(C Y-I,[Al i ' .,1 [ F1 ' Cl ] 0(3 -.! I 0 % T-,O H:ArI ] l~INK]i . 11: IN .lM)(-.lM

(" C) M T A. 0 XT fi/ ri 1' 2 ( L .- I'I- H. MI.IM *: 1 1k
C J.[,; i'..1 f u roSE I:P T Ir IlI., T (l-ii'.!f; r MAX I il lD * i1II~I . IN )II: fMiuC ,K /l:i.,

' I j~l (.I0, I. VI, I. .'lT -I I iA OFr L [h I. WT l::I I l:I I TI MI . O iI, ).'
I 1 b VI : MI(.11 ' I 1F'111CI IN t.ii., [. IIIII)I iiIO I I-I1 5LOi ,l U :.
W Id 1(I V 101<111 C AN BE M61WE

II "

t':;v4 .4:4tlt h'.: *.: 1:444 t4",l~** 4,: *4.4 !.l 4* r IICI iI: 4* 1{ *4 -1*444-'1.*: /44,4:4:4144. *I

(C ii XI; ril 1 : r 4. *'r [ Ir:r 1-:
V fIKA" . (511:1 I LS: o r " N T 1 ....

C X ( ) TH-I X-, C '.)13R11 NA T; OF 101 MT I
c Y (1): TH -- C0RI :t1 NATEfU OF 017:V) 1 NT .1
C ( I )= T'IE 7-A-OORDINATE O F P-O I NT I
c I .fUE iJ: 'M DUMMY VAR II AEH..FS REOIJ IRI?1 I) FOR 501+01)11 Nil ' F IND1-
C DIS TIANCE BT NOT "),EI. IN TIlS ISUFT!ROUT INE

C ME:MX ( i) THE x-COORTI I NAT[_* OF POINT .1 FROM THE PRV I: 0Us R TFAT C o
C M I )MY( )= THE Y.-IOORD]£INfTE OF POINT I FROM THE PrEVIOIJS ITERATION
.. ME" ( ) = Hw -.-COORTE'INATIE-' OFI: PG INT 1 FROM T Il 1:1:71xOUS I T I N

C, SIZE- THE STEP--SiZE

oC,

* C I NTEGER VFI~LF
C N= THIIE NUMBER OF POINTS'
c THE. NUMBER ASSOC "ATED !.. EH NiT DI:( NT 1

. . C EN D (T I A NU BE = WiSX-C. OOCUIN, T 11 WFFIITH U. FIRD T'I-.FIti:::LS :]E'rT[

: MF iC:'MY(r THE '- IF: OOR N,0C' A F P:' Ill I F'-NTM THE F11AV U [T .

C STIATPM T ( ) = T HEZ""CO( S FfiTIJS1 QJ i P't I- NIF ' I N l* HE F" I .' r.I XEr' OR: INE I lE !D ,, ' :
C S TATE-: THIE STATU'-S O H 'R)RM;EITlRDOEO U

C
11 Nt E C R V -l RT A N. T E IM

. "3T T- ( ) TH ST TU OF P011\11: 1V:" F:'T-I::P]IiED ORl IITSF

s (.:R s :iC THEU STATUS (0)1 N "S 'T IJi TEi.T

C t.-I-: MUTFN A NI) )x - TO.SR -.

:..e c

C

c~ N F. -im X~E WI SIITI: SC-AG HEU MS> HL l'iI.J M1F Y fI i -11

M . M Y -5 -2- -. 5 0

1. N-IT E. F I-,,, N v, E N 1 :.1 yE N DPTF'? MNU M" 1 X
CI" IA R Ar CTE V% S T A FPr ( 1,J0 1 , , * T AIL J ! ;* 4

• ,C ... IMi"OI:.TAWN NOTE' TO U.SILFR ....

,R M1, MA

56



I.,.

( I Z ',:: J.7,O
NUHF: IX 0)

(C l t :; I. OOFu u UNIS THr NUi MBER OF 01 F(i NTS! TiH'AT m.F I.FL-'Y F'IXED
DOil 600 JI-i.N

1F ,,ST( I"( FW . F') ITHEN

,r;00 iO -" EN i..IF

X STA1LTU S)
C THE' SE NF:XT[ "TWO I1F S'TAPTEM:ENTS F-IX A NEW P:OCINT

IF (ST (FNT(E'I::T 1) & D l.J ) THEN
NU!HF I X:::NUF: I X+ .

GO TO 610

E .:!\D IF

IF: (STATPT (EN.OPT2) EI. ''." ) IIII:N
NUNE X =NUMF: X'IXT1.
SSTAT I'T ( ENF' PT2 )F

END IF
C :IF" ALL.. 'T-HIE POIN'T S ARIF I XII, TI'IN C(ECK TO SEE IF: TIlY ARE IN THE
C SAME LOCATION AS BEFORE
610 IF (NUIMFIX .EQ. N) THEN

D0 620 I=IN

IF (MlMX(I) *NE. X(I) OR::. MEMY(I) .NE. Y(I) OR.
MEMZ(I) .NF, Z(I)) THEN

STATUS="R IUN"
E0 TO 630

F.: L. S E:

STAl.US ':: .O.I (3 N "
-EN' IF

620 CONT I NUJE
C IF "THE POTN'S HAVE MOVED SINCE E TIlIE LAST ITIERA TION , rHIEN UINFIX All

C THE P OINTS, STORE THEIIR L.OCATIONS IN NEMORY, AND RIJN TIHROUGH THE
C PROGRAM AGA:IN
63 Q 0 0 640 I ;::IN

STIT ':T( ) :: 'U-'
iI" M X ( I ) =X( I)

MFM:MY ( I ) := Y (I )
MEMZ(I) ::: ( I)

10 '0 CN T IU N1U-
0 N TT1 I

*E i I)'

C

C BF',',O) T. ]' NU I::FIN I N'T

C THIS SUBFOU'TINE PR NI S T"lIl:. LOCAT I(ION Ol Al I.. N P.'OINTS S 1( IlOHIL

67
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r r . - , ' l i .- ,- - - -',' -l -, *[ I . - - I'.,, Y VW )[ - rr

I"

C VAH ] APBI- DK]{ I Ni[l ] ONI.!!

R :: ~ I lI~I X-I(C0 .',D I NATEi! UP PI:'.NT I
Y Y . j: 111. { -. :1.1HAL ]f PO N " I* (2

f -COORDj(.INATE(>(j OFl PI NT .1:

(C :f NT I (3.:. F r: " , I:F1 1 F: . E :
"IC u ... TH-IL w[t1lI:: 01:: l::Oi] r mc;

(
C

(7:

C
SIJBR:ILJT 1T. NEi PRF .E NT ( X, Y .Z .N )

REAL. X(50)Y(50) Z(50)
INTEGFFR N
WRITE ( 3,700)
:O 710 T.=I,N

WRITE (3 720) I ,X( I ) ,Y(I ) ,Z( I )
710 CONTINUE

WRI TE (3, 730)
700 FORMAT( " POINT' ,gx, 'I*' ,13X, 'U*' ,13X ,'V*')
720 FORMT(3X,12,7X,F.3,7X,FS.3,7X,FB.3)
73 0 1 F ;OIM, ( " ' )

END
C
C

C SUB, OUTT[NI. ROBOIIT
(-

TILE[S SUBI:OUTI NE: CONVERTS FO.It.,S FI TI-RII: : ..*, u'f:. ANi V*
C C 00 ;i NAT CE S TO THIR I TI MLJLUS VAh. LiES AD TE IEN [ 0 TI I - I
C( P1HOSHO:: I..IM UMINANCES A NI PRI.INTS /HI. SF VALIUES TO TH HI F I.L NAMEDI.

( 2 ' EPCOUT' (A.K. A. SPACE-OUT)* THE USER MAY CHOOSE TO ESTAB LI.SH
C 7IFFER'NT VALUES OF MAXIMUM .. MINANCIE., -IME NII.:,M VEi PIME NOT,.
C AD CIHRTICI TY CIORDINATES FOR THE GUNS OEPENDING O I S OR
CliE PA' T IF:T.l]CULAR APP I TO F]:CSAT ON ,"SO. FOR SPACINS IN A SY l? II

OTHER THAN THE CIE L.*U*V* SYSTEM, D IF.FERENT TRANSFORMIATI(ON
C lF!(:)UJTI:OHS MUST 14]: WJ-31:11l.

C

C
S(68
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. . I \t,C "I 1lJ:Yl ',I'. I Jil ',('1 i1 -. ()1I ,I,,. (Ii', l-"IIN. T 1

[ 'ri '", ')- fil VIh I.I Filly F-OFI:.: Fi'!." '+ 1I I: I LV I.W GU

C V,: I I U II.""HrVlA 11 0 1- 1 , IN I F* F , 0ll I L. D:..IN
tk "r'l:.:. I H' M ... I H T C II Y t 0 :1:D1 ,l AT E:I. V DtI: '1 11."- 1 "

I .,'(ii; I II :{ C !-I;( P 6 1( ( FI 1' 1":7 1( 1? :1: i . h l l t i
. .... II ! 1ill J , 1::. I IIIF I,1.1,11:.' G.1

C.1 I 111IC, I 11 -M 01 1 *1 l. 1 , 1 -1 D T ~ I-. i: I UL . 1 8 LlJ3 ~ P I T T

III Y I1 I IL .1 I II %, J I [ I I.  1....O.. 1 O

{.ZVFT O I" i ,: (-c. 1 '' I. l O H AI-
C UFl'ki MlI :: (I I IL i LIF lI- U. 0.I N1 11 V It NN

C X FR [ (] I I I) ... [II Q--- ,II:: OF ZQ'.j7J2I JI F FOR P T;;[i T.[ U U It!I-]FU ::O N

C UMY LLX1(I 1"1'  l A ('1 0 1 I N I.' N U I I..A... ( ) I-IF Y -CCO Ii U F I ] I- T.MU.L VNTI..". N:T. 1- INT I

C T ID. L : l 7 l- C--C 0;IT oI.TE 0 1: 1 F1R. S I'.[HL.US V A L: UEr FOR FOINNT I
t. I. I IF: I T I ) l - 1I LO. HO. R) LI"I N I.:: F F 0 ' NT T

C V I,:, F,' . i'" Y. ] .1 1* l i [] A, L. I ... I. 1] [ - :' i H El I: 0- 1 : OI r. N T T
C SMtAL.LX 'I):- TI-II. X C, -I --' r' i A1 C*UT Y CO(.)0 -'I.YI Nf'TI:' (F: F'(]]' T I
C S M (1L. L [)= TH11E Y C (], NP'TIC;IT- IY C,0 ( 'OOR'T)T N ATE 0OF 1::'C)I NT I
C S)AI " L... Z I 'T .... "TII: Z IC,- HR 0 N"TICI'TY CO'--.1NATiE= OF' i-'OINr .1,
C YFED ( I :.'-" E F*NEII] F'HOSF 'HOF, ILUMINA NCE FOI:* FPOINT I

c Y( .. N (:1)= TI-r k F:N IHOSFIlF, LUM IN ANCE FF1:' POINT I
C" YBI_.tr. ( I) THE BIUE IHSF'lF' l...UNiI NANCE FOR POINT I
C = THe FI -,:I -. ( -SOW . F 'I T CS"--CO _L.)MN VI)L. UI OF THE TRANSFORM TION M ATRIX

C" TIIAT CONVERTS TRISTIMULUS VAIJES 'TO PHOSPHOR LIJMTNANCES
C K2 THE FT F'ST ---ROW, FIONiv-CfLUMN VAI..UE OF- THE MATRIX
C K3.:::: THE FIRST--ROW, THIIRI--COLUMN VALUE OF THE MATRIX
C K41:1: TI-1i=- 'I-1I'I .il-O,I. F I:sT-COI...UMN VALUE OF THE MATRIX
C I,, -+:: TI-IIlT HT. F'0--OW S1CONI--.2O...UHN VAiL.UE OF THE MATRIX
C 6:-: TFl-II- TI- I II -RO,W /II R ,I'.'C0I... UM N VAL UE OF: T I-I-; MATA'I X
C DILT: TIlF I IE DETFR% Il N A N T F lIT R NS F7O R MA T I ON M A TRI X
C

C 1'.11 FI- R V A R I B E S
N-: TI-IF NUMBI".R 01:: POr.NFS

C
C CAIRAACTEFR VAR :TBI.I:-

IT ( U' r I IT 1-E ST i,'k. OF T 1. Il: kIl::, , , FI AM 1: IT R 11N[F ' O, ' R F UN '
C
C

C,
C

SII IFC( I T" 1.! V'' I :G -(II. ITF I 1 :%Tf F~-. ..S I I .I , VS .3 TA , N YR, Y I-., Y Gl:':.:l!: E. 1\ Y BIL.UE', S TT (IUS)

R*EA I LL.. LS'1 I, ' ) i F. U 1 , V.,( ). VS T ( , ) , X Y ':) XG YG ,X-c TYB YN 1

,,- I m \IT .J I -'U I 1 N I I DT (',!. ( .0) .j YT'0T OI.. ',t 5 ) TOT (A L ) . U F I M ' 5 0)Vi -II"" 1 1 ) Si I LX" ( ); .SN A' .I Y ( ',0 ) ,SM t'A.I.. Z (5 0, ) ""YFII ( 5 0j )

?I y GlIT F H L L. 1 Y 14. U' . .J 0 K.. 2 KK3 K4 K 5'I" 6 D LIT
IT N, I V N
C, 1 11: AIT ( I I: TI UL S-I
XF;=. 6

Y R :
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'TI, 1-,

* NOl 1=230 .0
IJI MNO F, I53:76

UI-MNOVI: I691()(
KI -XI/Yl71'

K5-(I-X 'TI ) /Y(-
* No 1 IXl' YB) 'YE

lDO 800 1=1, N
C THIESE ARE THF T2RANSFORMATI ON FOUAT 11 DM

YTOTAL( I)=:(( L.STAF:CI )+16 )./116 ) *3)4;YNO"T
JER I ME(CI ) CUSTAR (I)/7(1 3*i..SFAM C ) ) ) +PMNI3T

VF'RI ME CI )=(VS [ARCI ) C1 3*L.STAk (I))) +VPMNOT
SMAI..IX CI ) :9*Lj'IIME CI )/(C6*UPk I MirC )-i6*VPRIME CI ) +12)
SMAI.LYI)=4*VPRIMEI)/(6*IJPRXMEC)-16*VFHIMEC(r)+12)
SMALLZI)=i-SMALL.Y(I)-SMALLX(I)
XTOTAL CI )SMALLX CI) *YTOTAL I )/SMALLY CI)
ZTOTAL CI )=SMALLZ C I)*YTOT L.CT)/lEMALLY C I
YRED ( I)=CXTOTAL CI) *( N6-K5) FYTOTALC I ) *(C3*I5-K2*N6 )+

I ZTOTAL CI) * C 2-1 3) )/DEfl K)YOA(*Kl6-34YGREEN CI ) XTOTAL CI )* (1 4-16 YOA 11161314
I ZTOTALI)*CI3-Nl))/IE*T

YL(LUE (I~)=( XT1TAL CI )*(1 51 4 )+YTOTAL CI )* (12*1 4-1 1*15) +
& ZTOTALI)*CN1-K2) )/DF:T

800o CONTINUE
C T HI S SECT ION FORI:MATS AND. PRHI NT S LI-I COMPUTE FLTRHIST:tMUL US V ALUES ANT'
C PHOSPHOR LIJMINANCES

* ~IF (STrATUS EQ ri /TONI? ) TH-EN
WRITEC 3,810)
WRITE( 3,020)
DOC 830 1=10,

* ~~~WR IT E 3 40 ) IXTOT AL I),YTOIAL (1) 71 UT ALl.()

9350 CONTINUE

WRFTE (3,860)
WRITE (3 ,$70)
1)0 880 t1,N0

* bJI:~~~~WITE:3,34o)IYREICj),YRFg(.B:E.NC ) ,TYI.1Il
p.. 880 CONTINUE

WRTE(3vB50)
WRIVTEC,F350)

END IF
810 F ONMAT CI X&,/T i- TRHI STI ML.U S VALUJES ARE')
820 FORMATCX, POCNT',?X, 'X 14X, 'Y',14X, '7')
8 40 FOHMArC3X,I2,7XFUJ.3y/X,I0.3,7X,r845)
8 t,0 FO:,':M ATC
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0

Appendix C. Example of Roley Heuristic

Spacing Four Points in a Square

Q
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ndi:: (. Lxumpl, of Rob': I.uri t ic S:a ci n Four Points in a Square

, , " " ; - i. ' ; ,-

' . ...' - ,.

5i
r4.

T . - .- DP I I T 1 -C-C0 Ii 2P

I I I 5-

T5 -?- T ':

p .. C "I-
TI 2 - :.1. rI' t' '"T ,' " 12T . '
,,3, h4 --§ u,'gr, t e,  

" ' i iT2: -. '..3 "

T- ST / - ' .V....
P21 ! ( "< q" ' ' '7 -C , " -C",'; P",,TT

P .- ,-.

'3 A q 1

' '' rN J -: "' -_*',
T:L).<92_ '4 ' 1 ' I,[ r,? 1 .,

., T V m
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T* ' - .

p..,j

1 -1 M A XT I TST C IS

C 1' 5' T i p f

I L I

iI

2

-. ..

'-i MA 1 :1 P I" jC1If-

T'I 0 HE c O T N~ 1TAC T1S

THE ST P - S7 .1 I
pO1 N -" C) DJ1 T "-CJ T

? .: •
THE 3'lA -I A l DI S .12--

T -1 1 1 11 N I T

CO TPNI'C T~ Q T ~

.: ~~POINT X-C CO 43 1.IA T - '-C3 *.R "i :AT - 7-U]f

1 .l

2 ..... 9 '

3
rI i .72 .OI U

CO RE T9,I[%S TO O :T 1 A ,T -1 T - I I, -.
HI 0 i:.,

pci1 0. 1 .

2 ~ ~ -. 7LQ.'

3 P e

,, , TH - 14 .(['4 -;1 r ',, I I- 1 , .A ,

1!r t r r ' '  
* . ...

_- 9. i.?• .

'- U.. . .7".i

3 , 7!1 ,-

t , ' ; Cop'



f. - ) T 1 -
I I L T -

'- - ..T 3 > ' r.;" r 1

i ]1 ; IE -;I -  " ,1 .

P O I N T X - c - ) 1D IN A I E / C R) t D") A T ;" - C ( r ' £ [ P C '~ l T
! /. %1 ,) .. ". ,
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TIV MAY IMIIN I S, JC E IS . S

T H F- 3 TE: S'I 2 5 .i
T H<K S EP-,I" I S . 130
f Hr - _ r c ' r

I T. A ,fi

] ,N • 7 35 • .( • 1

"H +' M.7 SrAC .11 . 505

f'- S' ? I T 3 .ZD

4 ) . ,• . -

-1IL

Il :; 5 .i " 11."3
r'.I- '*.\• fl , -'r.', : j .. .. *

- i. r X ,
:,7,

<. 1

THY MA'II I " i 'I:r _ I s I
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P4 . . A .

r :- -17 "1 .T

1 i tq :? lJ r, S ~ ,

1C t IP- :

nOr -r X - .-i ,A ¥- ., 
r  -- }' (L. T

3 L' .r: -. - 7 7

/4 . ., "

F'Ti: A< M FE -'1:7 d..II -'

POINT (-C )QJ-A AT: .. .. >J T ?-C )EL A

Po I'- N T ' -

C ,, , " ! '- • IC '

T1 - -

3 ;r ,_, ? .2'.S

POINqT v-C)iL-i,;- -h )"' Tu-JA ,Tl:'T

1 . -r -.-

1 T

1r

Copy avI la -o DTIC -:"-

.] ~ ~ ~~ ~~75 permit fully s 5 .Z:,,-J.-.
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1 .'-' -. " -- :-' .- .- -.
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---- T T ; -" ' i* -.
PT T *-' : ,-. ,,:-(C - .: - r

T ).
" 

.9 -. [ <Q- r k -. I.;

pOT.NT N- C O]I) HiA T Y -CL ,] D) 'iAT L" 7.-CO '>.E;': 1

2 .oo3. .0-5..7r

T0 .l 7 M V

•4 . J. .00, .1
i TH-j .'i4<I'IN rST#NC-- IS 9

C1R ._SP D , T, PuT T3 1 A.O
THE STEP-SIF iS .007P

POINT X-COOR T,. Y-COCRDIfA TE 7-CO p NTE

2 .0905.9 ,+!

2 30 .07S.u}
3 • C 0 "  .0: "} 1 :

THz MAXIMIN F;ITA-JCF IS 9 0
C" T. PC' ,T 1 A';D 4
THE STEPz-S17[ 1S .0"73

POINT -- Y -C D0POI PI -CO'kL)i N IT .

4 , * .0i

Te+ *i" *i: - .'s'sC.5 .],?TH:- 'A"I -MI"r; D T J C -  SJT3

C L ,- 3 P ] _ i  IL' s(''T. T) P J S. .

TH- STE_ -,IT- P i53 .*;:

P 0 1 NT Y -'":2 ,."R "- ' '-C,)" , 0 'T 1 Cf. ,R I : T

-r 19 C,7

• ifc • '. s; • .

4 -F . •

T mi Mi 'iIrj fJISTA' t9 IS 9:1
' ) R R -K S P ", ,fi ] I < . ,  T ... P " I P JTS, . I .A r , ,

T H S TE - ..

iTH. .M1 1M , I T AN+.47 1 rC" R R+ •-S "4? ".- r. T r.. P " I . ... 1. -
T~~ -i -T E



' ... 
.

r i

F! -" .

T : - T1 " 
- S 1 7 1 q

', 
,j.- - --

r , -C 
A Z ., 0 ,,

T',4ic A <I ' 1 fI::TA \C Y 13 .'JJ

C -O R kRSON I:\ - TO P UTI'4T5 -5 ,-

TI ST&P-3I 
- IS fi.

P M 'T ,-C ).J,,r, A F v- q J I, O ATf Z -COORD UATE

0 3

,: • ~~.-- , 0 0

T4- A 1 1-fI J ' C I3 9

r 3 r

Tg- T ~ ?j.'Y

C 0 0 DO T N TE

T -II

T ' ''-' T V .; f .C 7

I AT - I A T.

* -7 . I.9 S -KPOIT , "l,2  , ;' r- O'1 11 1 I ' I"T,- - ;'-COR iJI. TI .

If l . .. I 4 ) - J.I

Copy avIlable to DTIC dcn= not

77 permit fully legible i'poduction
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AI

-. ~7 7. -, 7. 7~

1

II

.o * .1:

P1~ 0 -J1N1TC IATC0t

2~ :r? '?'A'

3 1l

THE A -X 1 'i I S T C'. IS

C )R' ES 9'%) T' T P- T T 1 A', L
THE- Sr:P-S I Z 1 1
OIT X- C 0)f I ' T1

T W- i A I - C .1

C ,C P ., . , -

COgRRE.So".C'I. T- TV; ZFT;T' r ._ i ', D

THE STE7 -S, I I,

POIIT X-C 1 -' i)' U )T 'T-C

1 . ,. r L

TH'-' iA { . ...). ,'E 1..

TH,-'-'- I/ ." .', '.1

1-' : .;T ' "- S - . '

i .. .. ,. 4

'4i

'- : . E .

T H - V4 ( I : I 7 I ;T F.' iC, ]. - ,
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L

*. . ... .

rV4

T - A : I I

Lr

f. . ... 

p I Tf

*oT i T.

- - . .- , .1

- t. C! " .

4 fl- AAI iT~ j

r' F S .i , " .,u T.- 1 7 ;

1'71 31T - - I T. '. -_ ]
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Although the solution is now optimal, the program continues until the

step-size is less than .0001 at which time the step-size is reset back to

.5 and point number three is fixed in its place, allowing the algorithm to

concentrate on trying to optimize the other three points. The step-size

then gradually decreases back to .0001 and another point is fixed, and so

on, until all four points are fixed. At that time, the locations of the

points are stored in memory and all the points are unfixed to see if any

more improvements can be made. The program then goes through the whole

process again, reducing then resetting the step-size and fixing the points

until all four points have been fixed. Because no improvements could be

made, the program is done at that time.

Copy avQohlC to Dr.C di noa
pernit fuil;, legible 1eP oduc t ofl
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